DOI QR코드

DOI QR Code

DEVELOPMENT OF A NON-STANDARD FINITE DIFFERENCE METHOD FOR SOLVING A FRACTIONAL DECAY MODEL

  • SAID AL KATHIRI (School of Mathematical Sciences, University Sains Malaysia) ;
  • EIHAB BASHIER (Faculty of Education and Arts, Sohar University) ;
  • NUR NADIAH ABD HAMID (Academic Services) ;
  • NORSHAFIRA RAMLI (School of Mathematical Sciences, Universiti Sains Malaysia)
  • Received : 2024.01.08
  • Accepted : 2024.03.19
  • Published : 2024.05.30

Abstract

In this paper we present a non-standard finite difference method for solving a fractional decay model. The proposed NSFDM is constructed by incorporating a non-standard denominator function, resulting in an explicit numerical scheme as easy as the conventional Euler method, but it provides very accurate solutions and has unconditional stability. Two examples from the literature are presented to demonstrate the performance of the proposed numerical scheme, which is compared to three methods from the literature. It is found that the method's estimated errors are extremely minimal, such as within the machine precision.

Keywords

Acknowledgement

Financial support from Universiti Sains Malaysia's Graduate On Time Incentive with account number 1001/PMATHS/823233 is gratefully acknowledged.

References

  1. C. Milici, G. Draganescu and J.T. Machado, Introduction to Fractional Differential Equations, Springer International Publishing, Cham., 2019.
  2. R.E. Mickens, Advances in the Applications of Nonstandard Finite Difference Schemes, World Scientific Publishing Danvers, 2005.
  3. M.M. Hikal and W.K. Zahra, On Fractional Model of an HIV/AIDS with Treatment and Time Delay, 02- Progress in Fractional Differentiation and Applications 2 (2016), 55-66. DOI 10.18576/pfda/020106
  4. K. Dolfsson, M. Enelund and S. Larsson, Space-time Discretization of an Integro-differential Equation Modeling Quasi-static Fractional-order Viscoelasticity, Journal of Vibration and Control 14 (2008), 1631-1649. DOI 10.1177/1077546307087399
  5. M. Dalir, and M. Bashour, Applications of Fractional Calculus, Applied Mathematical Sciences 4 (2010), 1021-1032. DOI 10.4236/jamp.2018.66105
  6. A.E. C, alik, H. Ertik, B. Oder, H. S,irin, Fractional calculus approach to investigate the alpha decay processes, Int. J. Mod. Phys. E. 22 (2013), 1350049.
  7. S.S. Alzaid, P.K. Shaw and S. Kumar, A numerical study of fractional population growth and nuclear decay model, AIMS Math. 7 (2022), 11417-11442. DOI 10.3934/math.2022637
  8. M. Turkyilmazoglu, An Efficient Computational Method for Differential Equations of Fractional Type, CMES-Computer Modeling in Engineering & Sciences 133 (2002), 47-65.
  9. M. Alqhtani, K.M. Saad, Numerical solutions of space-fractional diffusion equations via the exponential decay kernel[J]. AIMS Mathematics 7 (2022), 6535-6549. doi: 10.3934/math.2022364
  10. Y.M. Wang, B. Xie, A fourth-order fractional Adams-type implicit-explicit method for nonlinear fractional ordinary differential equations with weakly singular solutions, Mathematics and Computers in Simulation 212 (2023), 21-48.
  11. E.B.M. Bashier, Fitted Numerical Methods for Delay Differential Equations Arising in Biology, Ph.D. thesis, University of the Western Cape, South Africa, 2009.
  12. C.A. Cruz-L'opez, G. Espinosa-Paredes, Fractional radioactive decay law and Bateman equations, Nuclear Engineering and Technology 54 (2002), 275-282. https://doi.org/10.1016/j.net.2021.07.026
  13. L. Banjai, M.L. Fern'andez, Efficient high order algorithms for fractional integrals and fractional differential equations, Numer. Math. 141 (2019), 289-317. https://doi.org/10.1007/s00211-018-1004-0
  14. D. Baffet, A Gauss-Jacobi Kernel Compression Scheme for Fractional Differential Equations, J. Sci. Comput. 79 (2019), 227-248. https://doi.org/10.1007/s10915-018-0848-x
  15. D. Baffet and J.S. Hesthaven, A Kernel Compression Scheme for Fractional Differential Equations, SIAM J. Numer. Anal. 55 (2017), 496-520. DOI 10.1137/15m1043960
  16. M.Y. Ongun, D. Arslan and R. Garrappa, Nonstandard finite difference schemes for a fractional-order Brusselator system, Adv. Differ. Equations 102 (2013), 1-13. DOI 10.1186/1687-1847-2013-102
  17. B. Jin, Fractional Differential Equations, Springer International Publishing, Cham, 2021. DOI 10.1007/978-3-030-76043-4.
  18. D.G. Zill and M.R. Cullen, Differential Equations with Boundary-Value Problems, Brooks/Cole, Belmont, 2001.
  19. M. Awadalla and Y. Yameni, Modeling Exponential Growth and Exponential Decay Real Phenomena by ψ-Caputo Fractional Derivative, J. Adv. Math. Comput. Sci. 28 (2018), 1-13. DOI 109734/jamcs/2018/43054 109734/jamcs/2018/43054
  20. E.B.M. Bashier, Practical Numerical and Scientific Computing with MATLAB® and Python, CRC Press, Boca Raton, 2020. DOI:10.1201/9780429021985
  21. R.L. Burden and J.D. Faires, Numerical Analysis, 9th Edition, Brookscole, Boston, 2011.
  22. H. Shintani, Convergence, consistency and stability of step-by-step methods for ordinary differential equations, Hiroshima mathematical journal 15 (1985), 89-107.
  23. S. Kumar, R. Singh, R.P. Chauhan, Investigation of an Interacting Fractional-Order Predator-Prey System in Presence of Fear and Harvesting, Iran J. Sci. (2023). https://doi.org/10.1007/s40995-023-01540-5
  24. H. Zhang, Y. Liu and X. Yang, An efficient ADI difference scheme for the nonlocal evolution problem in three-dimensional space, J. Appl. Math. Comput. 69 (2023), 651-674. https://doi.org/10.1007/s12190-022-01760-9