• Title/Summary/Keyword: Finite difference approximation

Search Result 134, Processing Time 0.029 seconds

Numerical Analysis of Ultra-Thin Gas Film Lubrication (초박막 기체윤활의 수치해석)

  • Chung C. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.207-213
    • /
    • 2004
  • A kinetic theory analysis is used to study the ultra-thin gas flow field in a gas slider bering, The Boltzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. Calculations are made for a flow in a micro-channel between an inclined slider and a moving disk drive platter. The results are compared well with those from the DSMC method. The present method does not suffer from statistical noise which is common in particle based methods and requires much less computational effort.

  • PDF

NUMERICAL ANALYSIS OF GAS FLOWS IN ULTRA-THIN FILM GAS BEARINGS USING A MODEL BOLTZMANN EQUATION (모델볼츠만 방정식을 이용한 초박막 개스베어링 기체유장 수치해석)

  • Chung, C.H.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.86-95
    • /
    • 2009
  • A kinetic theory analysis is used to study the ultra-thin gas flow field in gas bearings. The Boltzmann equation simplified by a collision model is solved by means of a finite difference approximation with the discrete ordinate method. Calculations are made for flows inside micro-channels of backward-facing step, forward-facing step, and slider bearings. The results are compared well with those from the DSMC method. The present method does not suffer from statistical noise which is common in particle based methods and requires less computational effort.

UNIFORMLY CONVERGENT NUMERICAL SCHEME FOR SINGULARLY PERTURBED PARABOLIC DELAY DIFFERENTIAL EQUATIONS

  • WOLDAREGAY, MESFIN MEKURIA;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.623-641
    • /
    • 2021
  • In this paper, numerical treatment of singularly perturbed parabolic delay differential equations is considered. The considered problem have small delay on the spatial variable of the reaction term. To treat the delay term, Taylor series approximation is applied. The resulting singularly perturbed parabolic PDEs is solved using Crank Nicolson method in temporal direction with non-standard finite difference method in spatial direction. A detail stability and convergence analysis of the scheme is given. We proved the uniform convergence of the scheme with order of convergence O(N-1 + (∆t)2), where N is the number of mesh points in spatial discretization and ∆t is mesh length in temporal discretization. Two test examples are used to validate the theoretical results of the scheme.

Three-dimensional Finite Difference Modeling of Time-domain Electromagnetic Method Using Staggered Grid (엇갈린 격자를 이용한 3차원 유한차분 시간영역 전자탐사 모델링)

  • Jang, Hangilro;Nam, Myung Jin;Cho, Sung Oh;Kim, Hee Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.121-128
    • /
    • 2017
  • Interpretation of time-domain electromagnetic (TEM) data has been made mostly based on one-dimensional (1-D) inversion scheme in Korea. A proper interpretation of TEM data should employ 3-D TEM forward and inverse modeling algorithms. This study developed a 3-D TEM modeling algorithm using a finite difference time-domain (FDTD) method with staggered grid. In numerically solving Maxwell equations, fictitious displacement current is included based on an explicit FDTD method using a central difference approximation scheme. The developed modeling algorithm simulated a small-coil source configuration to be verified against analytic solutions for homogeneous half-space models. Further, TEM responses for a 3-D anomaly are modeled and analyzed. We expect that it will contribute greatly to the precise interpretation of TEM data.

A study on the approximation function for pairs of primes with difference 10 between consecutive primes (연속하는 두 소수의 차가 10인 소수 쌍에 대한 근사 함수에 대한 연구)

  • Lee, Heon-Soo
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.49-57
    • /
    • 2020
  • In this paper, I provided an approximation function Li*2,10(x) using logarithm integral for the counting function π*2,10(x) of consecutive deca primes. Several personal computers and Mathematica were used to validate the approximation function Li*2,10(x). I found the real value of π*2,10(x) and approximate value of Li*2,10(x) for various x ≤ 1011. By the result of theses calculations, most of the error rates are margins of error of 0.005%. Also, I proved that the sum C2,10(∞) of reciprocals of all primes with difference 10 between primes is finite. To find C2,10(∞), I computed the sum C2,10(x) of reciprocals of all consecutive deca primes for various x ≤ 1011 and I estimate that C2,10(∞) probably lies in the range C2,10(∞)=0.4176±2.1×10-3.

Computational solution for the problem of a stochastic optimal switching control

  • Choi, Won-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.155-159
    • /
    • 1993
  • In this paper, we consider the problem of a stochastic optimal switching control, which can be applied to the control of a system with uncertain demand such as a control problem of a power plant. The dynamic programming method is applied for the formulation of the optimal control problem. We solve the system of Quasi-Variational Inequalities(QVI) using an algoritlim which involves the finite difference approximation and contraction mapping method. A mathematical example of the optimal switching control is constructed. The actual performance of the algorithm is also tested through the solution of the constructed example.

  • PDF

Control of an stochastic nonlinear system by the method of dynamic programming

  • Choi, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.156-161
    • /
    • 1994
  • In this paper, we consider an optimal control problem of a nonlinear stochastic system. Dynamic programming approach is employed for the formulation of a stochastic optimal control problem. As an optimality condition, dynamic programming equation so called the Bellman equation is obtained, which seldom yields an analytical solution, even very difficult to solve numerically. We obtain the numerical solution of the Bellman equation using an algorithm based on the finite difference approximation and the contraction mapping method. Optimal controls are constructed through the solution process of the Bellman equation. We also construct a test case in order to investigate the actual performance of the algorithm.

  • PDF

APPROXIMATION OF DERIVATIVE TO A SINGULARLY PERTURBED REACTION-CONVECTION-DIFFUSION PROBLEM WITH TWO PARAMETERS.

  • Priyadharshini, R. Mythili;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.517-529
    • /
    • 2009
  • In this paper, a singularly perturbed reaction-convection-diffusion problem with two parameters is considered. A parameter-uniform error bound for the numerical derivative is derived. The numerical method considered here is a standard finite difference scheme on piecewise-uniform Shishkin mesh, which is fitted to both boundary and initial layers. Numerical results are provided to illustrate the theoretical results.

  • PDF

Computational Solution of a H-J-B equation arising from Stochastic Optimal Control Problem

  • Park, Wan-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.440-444
    • /
    • 1998
  • In this paper, we consider numerical solution of a H-J-B (Hamilton-Jacobi-Bellman) equation of elliptic type arising from the stochastic control problem. For the numerical solution of the equation, we take an approach involving contraction mapping and finite difference approximation. We choose the It(equation omitted) type stochastic differential equation as the dynamic system concerned. The numerical method of solution is validated computationally by using the constructed test case. Map of optimal controls is obtained through the numerical solution process of the equation. We also show how the method applies by taking a simple example of nonlinear spacecraft control.

  • PDF

Regularization of Shape from Shading Problem Using Spline Functional (스플라인 범함수에 의한 명암에서 형상복구 문제의 정즉화)

  • 최연성;최종수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1532-1540
    • /
    • 1988
  • Shape from shading problem, such as other most early visions, is ill-posed problems, which can be solved by the use of regularization methods. This paper proposes the three kinds of stabilizer for the regularization. These are integrability constraints and spline functionals. Parallel iterative schemes are derived in the form of the finite difference approximation. Experimental results, show that the average error in surface orientation is less than 5%.

  • PDF