• Title/Summary/Keyword: Finite delay

Search Result 231, Processing Time 0.029 seconds

Queuing Analysis Model for the SR-ARQ Protocol with a Finite Retransmission Persistence (제한된 재전송 횟수를 지원하는 SR-ARQ 프로토콜의 큐잉 지연 분석 모델)

  • Han, Je-Chan;Kim, Beom-Joon;Lee, Jai-Yong
    • The KIPS Transactions:PartC
    • /
    • v.15C no.6
    • /
    • pp.523-530
    • /
    • 2008
  • In this paper, we analyze the mean queuing delay of selective-repeat automatic repeat request (SR-ARQ) protocol with the finite retransmission persistence. The retransmission persistence means the willingness of the protocol to retransmit a lost (or corrupted) packet to ensure reliable packet delivery across a lossy link. According to the retransmission persistence, SR-ARQ protocols have a different performance in terms of both packet delay and link reliability. So far, however, there is no serious study in the effect of the retransmission persistence on the SR-ARQ performance. We present a simple M/G/1 queuing model for the SR-ARQ protocol with the finite retransmission persistence by using the ideal SR-ARQ approximation. The mean queuing delay is obtained from the queuing model and verified its accuracy through the simulation results using the OPNET simulator. Both the analytical predictions and simulation results clearly show the effect of retransmission persistence on the queuing delay of the SR-ARQ protocol in various network conditions: packet loss rate and traffic condition over a wireless link.

Analysis of Load Transmission Characteristics for Automobile Helical Gear (자동차 헬리컬기어의 하중전달 특성해석)

  • Park, C.I.;Lee, J.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.1-9
    • /
    • 1995
  • The purpose of this study is to develop a computer simulation program for analyzing load transmission characteristics of a helical gear system in design stage. In this analysis, the rotational delay, load distribution, root stress, and contact area are investigated. That is, the influence function of deflection is obtained by finite element analysis and the influence function of approach and gear tooth error are considered. Load distribution, rotational delay, and contact area are calculated by solving load-deflection equation which includes these influence functions and tooth error, and the influence function of the bending moment is obtained by finite element analysis. The root stress is calculated by the load distribution and the influence function of the bending moment. The results of the simulation are cross-checked through a specially designed experimental set-up.

  • PDF

Feedback stabilization of linear systems with delay in state (상태변수에 지연요소를 갖는 시스템의 안정화 방법에 관한 연구)

  • 권욱현;임동진
    • 전기의세계
    • /
    • v.31 no.1
    • /
    • pp.59-67
    • /
    • 1982
  • This paper suggests easy stabilization methods for linear time-varying systems with delay in the state. While existing methods employ the function space concept, the methods introduced in this paper transform the delay systems into the non-delay systems so that the well known methods for finite dimensional systems can be utilized. Particularly the intervalwise predictor is introduced and shown to satisfy an ordinary system. Control laws stabilizing the non-delay systems satisfied by this predictor will be shown to at least pointwise stabilize the delay systems with the additional strong possibility of true stabilization. In order to combine two steps of the predictor method, first transformation and then stabilization, an intervalwise regulator problem is suggested whose optimal control laws incorporate the intervalwise predictor as an integral part and also at least pointwise stabilize the delay systems. Since the above mentioned methods render the periodic feedback gains for time invariant systems the pointwise predictor and regulator are introduced in order to obtain the constant feedback gains, with additional stability properties. The control laws given in this paper are perhaps simplest and easiest to implement.

  • PDF

Design of Low-Latency Architecture for AB2 Multiplication over Finite Fields GF(2m) (유한체 GF(2m)상의 낮은 지연시간의 AB2 곱셈 구조 설계)

  • Kim, Kee-Won;Lee, Won-Jin;Kim, HyunSung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.2
    • /
    • pp.79-84
    • /
    • 2012
  • Efficient arithmetic design is essential to implement error correcting codes and cryptographic applications over finite fields. This article presents an efficient $AB^2$ multiplier in GF($2^m$) using a polynomial representation. The proposed multiplier produces the result in m clock cycles with a propagation delay of two AND gates and two XOR gates using O($2^m$) area-time complexity. The proposed multiplier is highly modular, and consists of regular blocks of AND and XOR logic gates. Especially, exponentiation, inversion, and division are more efficiently implemented by applying $AB^2$ multiplication repeatedly rather than AB multiplication. As compared to related works, the proposed multiplier has lower area-time complexity, computational delay, and execution time and is well suited to VLSI implementation.

The Three-Dimensional Partial Differential Equation with Constant Coefficients of Time-Delay of Alternating Direction Implicit Format

  • Chu, QianQian;Jin, Yuanfeng
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1068-1074
    • /
    • 2018
  • In this paper, we consider the delay partial differential equation of three dimensions with constant coefficients. We established the alternating direction difference scheme by the standard finite difference method, gave the order of convergence of the format and the expression of the difference scheme truncation errors.

Stochastic Stabilization of TS Fuzzy System with Markovian Input Delay (마코프 입력 지연 시스템의 확률적 안정화)

  • Lee, Ho-Jae;Park, Jin-Bae;Lee, Sang-Youn;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.153-156
    • /
    • 2001
  • This paper discusses a stochastic stabilization of Takagi-Sugeno (75) fuzzy system with Markovian input delay. The finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero and hold devices are used for control input. The continuous-time 75 fuzzy system with the Markovian input delay is discretized for easy handling delay, accordingly, the discretized 75 fuzzy system is represented by a discrete-time 75 fuzzy system with jumping parameters. The stochastic stabilizibility of the jump 75 fuzzy system is derived and formulated in terms of linear matrix inequalities (LMls).

  • PDF

Time-Discretization of Nonlinear control systems with State-delay via Taylor-Lie Series (Taylor-Lei Series에 의한 지연이 있는 비선형 시스템의 시간 이산화)

  • Zhang, Yuanliang;Lee, Yi-Dong;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.125-127
    • /
    • 2005
  • In this paper, we propose a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption. This scheme is applied to the sample-data representation of a nonlinear system with constant state tine-delay. The mathematical expressions of the discretization scheme are presented and the effect of the time-discretization method on key properties of nonlinear control system with state tine-delay, such as equilibrium properties and asymptotic ability, is examined. The proposed scheme provides a finite-dimensional representation for nonlinear systems with state time-delay enabling existing controller design techniques to be applied to then. The performance of the proposed discretization procedure is evaluated using a nonlinear system. For this nonlinear system, various sampling rates and time-delay values are considered.

  • PDF

Delay-dependent Robust $H_{\infty}$ Filtering for Uncertain Descriptor Systems with Time-varying Delay (시변 시간지연을 가지는 불확실 특이시스템의 지연 종속 강인 $H_{\infty}$ 필터링)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1796-1801
    • /
    • 2009
  • This paper is concerned with the problem of delay-dependent robust $H_{\infty}$ filtering for uncertain descriptor systems with time-varying delay. The considering uncertainty is convex compact set of polytoic type. The purpose is the design of a linear filter such that the resulting filtering error descriptor system is regular, impulse-free, and asymptotically stable with $H_{\infty}$ norm bound. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent bounded real lemma (BRL) for delayed descriptor systems is derived. Based on the derived BRL, a robust $H_{\infty}$ filter is designed in terms of linear matrix inequaltity (LMI). Numerical examples are given to illustrate the effectiveness of the proposed method.

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO 3D CONVECTIVE BRINKMAN-FORCHHEIMER EQUATIONS WITH FINITE DELAYS

  • Le, Thi Thuy
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.527-548
    • /
    • 2021
  • In this paper we prove the existence of global weak solutions, the exponential stability of a stationary solution and the existence of a global attractor for the three-dimensional convective Brinkman-Forchheimer equations with finite delay and fast growing nonlinearity in bounded domains with homogeneous Dirichlet boundary conditions.

Robust Stability for Discrete-time Polytopic Uncertain Delay Systems with Quantization/overflow Nonlinearities (양자화와 오버플로우 비선형성을 가지는 이산시간 폴리토픽 불확실 지연 시스템의 강인 안정성)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1898-1902
    • /
    • 2012
  • In this paper, we consider the delay-dependent robust stability condition for polytopic uncertain systems with interval time-varying delay using various combinations of quantization and overflow nonlinearities. A robust stability condition for uncertain systems with time-varying delay and quantization/overflow nonlinearities is proposed by LMI(linear matrix inequality) and Lyapunov technique. It is shown that the proposed method is less conservative compared to the recent results by numerical examples.