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Feedback Stabilization of Linear Systems with Delay in State
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Abstract

This paper suggests easy stabilization methods for linear time-varying systems with delay in the state.
While existing methods employ the function space concept, the methods introduced in this papef trans.-
form the delay systems into the non-delay systems so that the well known methods for finite dimensional
systems can be utilized. Particularly the intervalwise predictor is introduced and shown to satisfy an
ordinary system. Control laws stabilizing the non.delay systems satisfied by this predictor will be shown
to at least pointwise stabilize the delay systems with the additional strong possibility of true stabiliza-
tion. In order to combine two steps of the predictor method, first transformation and then stabilization,
an intervalwise regulator problem is suggested whose optimal control laws incorporate the intervalwise
predictor as an integral part and also at least pointwise stabilize the delay systems. Since the above
mentioned methods render the periodic feedback gains for time invariant systems the pointwise prediétor
and regulator are introduced in order to obtain the constant feedback gains, with additional stability
properties. The control laws given in this paper are perhaps simplest and easiest to implement.

a general constructive method requiring the decom-
1. Introduction position and reconstruction of the infinite dimensional

state space can be employed for the stabilizationtV~,

The stabilization method used to be the first step
to the design problems. For ordinary systems there
exist many different methods. But this is not the case
for the time-delay systems, which appear in many
industrial systems, particularly in chemical processes.
It is well known that the delay system is stabilizable
if and only if the decomposed part of the unstable
finite dimensional subsystem is completely. controlla-
ble®. Under the spectral controllability*®, function-
wise controllability*®, and F-.controllability‘®, the

delayed systems are known to be stabilizable, Thus
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This method is quite difficult to apply due to the
exact computation of unstable poles and projections.
For the second general method we can, as expected,
utilize the steady state control of linear quadratic
regulator which has been known to stabilize the
system under the stabilizability condition®”. But the
computation of the associated operator Riccati-type
equation is very difficult to solve since it satisfies a
two-point boundary partial differential equation. Un-
der some special conditions similar to functionwise
controllability, there exist some special stabilization
methods®~ 12,

Meanwhile for the systems with delay in the
control, the Smith predictor method® and its exten-
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sions“®~1® have been extensively used for the stabi-
lization purpose, although the Smith predictor method
suffers from the mis-matching of the model. It also
has been shown that the spectrums of the closed-loop
systems can be arbitarily assigned*®. Recently a new
transformation, which is actually a predictor, has
been introduced for the first time in“”. This new
predictor not only transforms the delay systems into
the non-delay systems but also can be utilized for the
general method for the stabilization. This concept has
been carried out to more general distributed delay
system together with additional applications®'®.

In this paper an attempt will be made to utilize
the predictor method for the stabilization of linear
systems with delay in the state. The predictor intro-
duced for the systems with delay in the control®?”
employes the pointwise moving horizon concepts®: 2,
It will be the intervalwise moving horizon concepts®*?
that the predictors for linear systems with delay in
the state will employ in the section 3 of this paper.
In the section 4, the control laws derived from in-
tervalwise regulator problems are shown to employ
the intervalwise predictors as an integral part and
stabilize the systems under some conditions. The
advantages of the predictor or the regulator methods
will be the simplicity of the feedback control laws
and its transformation of the delay systems into the
nondelay systems, which makes the analysis easier.

2. System Description

The systems which we will consider in this paper
are represented by
2o()= Ao )z(t)+ Azt —h)+ B(t)ult), (2.1)
where z(£)eR",u(t)eR™, and Ay(t), A,(¢), and B(¢) are
#Xn, nXn, and #Xm piecewise continuous bounded

matrices. The solution of (2.1) is given by
x(B)=a(t; 200, to,ul.))=0(F, 2o)x(t,)
+[ 2,00, T+ WA+ h)x(e)de

+[ 06t B(eu(z)de 2.2)

where x(r)=x(t+71), —h<<r<0, and the state transi-
tion matrix 9(¢,7), te<<t<t,
continuous matrix solution of the following matrix

is the zXn absolutely

differential equation
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‘aaT‘”(" )= A, )+ AEXD(E—, T),

t,<r<t, 2.3)
with (¢, £)=I and O(f, s)=0 for {<s. The system
(2.1) is said to be completely pointwise (function-
wise, repectively) controllable on (4, ¢,) if for every
jnitial state x:, and every terminal point x, (terminal
function #(¢), te(0, 2],
control law ¢, . such that the corresponding

respectively), there exists a
trajectory of the system (2.1) satisfies the condition
z()=x(z, =V, respectively). The term “completely”
will be dropped in the forth-coming statements in this
paper. It is well known that the pointwise complete
system (2.1) is pointwise controllable on [, £,) if
and only if the controllability Gramian matrix

Wite, 1=, 00t DB@B @O, 3z (2.9

is positive definite. Since the positive definiteness of
the controllability Gramian matrix (2.4) implies the
pointwise controllability regardless of the pointwise
completeness, the system (2.1) will be defined to be
pointwise controllable in this paper for convenience
if the matrix in (2. 4) is positive definite. The system
(2.1) will be said to be uniformly pointwise controll-
able with an index 8.>0 if for some a,>0, >0,
the following condition,
a I<W(t, t+0.)<a.l 2.5)

holds. The system (2.1) is said to be stabilizable if
the system (2.1) with a control law of a form

ut=Koatr+ [ Kit, v)alwde 2.6)

is asymptotically stable, i.e., 2(¢)—0 as £—oo,

3. Stabilization Via Intervalwise
Moving Predictors

For any trajectory zx, of the system (2.1) the
predictor with the horizon point s>¢ will be defined
by the zero-input solution at the point s, i.e.,

2 (t)=x(s; x,, t, u(.)=0) 3.1
This is a predictor in the sense that the unknown
input in the future (2, s] can be considered zero as
often seen in stochastic systems with random noise
inputs, The predictor (3.1) is given by

z'()=d(s, t)x(t)-l—f:_ hﬂ)(s, T+ Az +h)x(r)dr

telty, 5) 3.2
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‘It is noted that the value s is a fixed value and z'(¢)
is defined on the interval (¢, s). The interesting point
-is that the predictor (3.1) satisfies an ordinary dif-
ferential system.
Lemma 3.1.

For a fixed s, the predictor z’(£)

-satisfies the following ordinary differential system,

—ddt—x'(t)zip(s, OB t), 1<s (3.3)

Moreover the delay system (2.1) is pointwise controll-
-able on {f,, s] if and only if the nondelay system
(3.3) is controllable on (¢, s).

Proof: It is well known that the derivative of the
state transition matrix with respect to the second

argument satisfies the following adjoint equation®®®,

-a?t—w(s, £)=—8(s, )AL —B(s, t+R)AE+h)
G
“Taking the derivative of z'(¢) in (3.2), we will get
=05, )a(t)+B(5,8)2(8)+ O(s, £+ R) ALt +R)z(t)
—&(s, )A,()x(t—h)
=(—0(s, }A(t)—D(s, t+R)ALE+R))x(E)
+ (s, tXAox(t)+ A)x(t—h)+ B()u(t))
+O(s, t+h)A(E+R)x(E)—D(s, 1 A)x(t—h)
=0(s, £)B(¢)u(t) 3.5
“The usual controllability matrix for the system (3.3)
is given by

Wiz, s)=‘£:¢(s, HBOB (G, £)dt (3.6)

-since the state transition matrix of the system (3.3)
is the identity matrix. The matrix (3.6) is the same
to the matrix (2.4) with ¢, replaced by s. This com-
pletes the proof.

The similar transformation (3.2) has been intro-
duced in“® without the predictor concept. It is noted
the predictor in (3.1) is defined on a finite interval
(t,, s) and thus it must be extended to the infinite
interval in case it is utilized for the stabilization. For
this purpose the intervalwise moving predictor will
be introduced here. First, the infinite time interval
(o, o) will be devided into equal finite time inter-
vals, (%, ), (f1, t2)... (¢, tivr). .. where t;=t,+4iL
and L>>0 is called the interval length. On each inter-
val, say (#_1, %), the moving horizon time s; is
defined by

si=ti+T 3.7
where 7>>0 is called the intervalwise horizon dis-
tance. That is, the moving horizon s{¢) is defined by
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si=t+T for ¢ ¢ 4y, £1)
=t,+T for ¢ iyt
s:g(t):g(t; L, T)= Sa 2 or v ¢ [1 2)

si=t;+7T for t ¢ (¢ ti41)
(3.8)
The intervalwise moving horizon s(¢) is pictured in
Fig. 1a and the arguments of the horizon, ¢, L and
T, will be suppressed whenever they are clear from
contents. From this intervalwise moving horizon (3. 8)
the intervalwise moving predictor denoted by x*(¢) cr
20 7(¢), will be defined by
2 )=z T(t)=x(s; z, t, u(.)=0)

=0(s(), t)x(t)%—f:hd?(s(t), c+h)A,

(z4+h)x(z)dr, 3.9
where indices L and T denote the interval leghth and
horizon distance respectively, In this paper the pre-
dictor will always mean the one in (3.9) defined over
(o, =), not the one in (3.2). From Lemma 2.1 the
predictor (3.9) satisfies the following property.

Lemma 3.2 For a fixed L and 7, the intervalwise
moving predictor (3.9) satisfies the ordinary system

%x'(l)I(D(s(t), DB ult) (3.10)

except for countable points £, £, £,...8:...

The functionwise controllability is considered the
natural counterpart to the controllability of the finite
dimensional systems although it is too restirictive.
Since the pointwise controllability is a weaker con-
cept, the weaker concept on the stabilizability will ke
introduced for the delay systems.

Definition 3.1. The delay system (2.1) with a
feedback control law (2.6) is said to be pointwise
asymptotically stable if there exists a sequence 7,, 7,
T3, Ti, » Ti—c0 such that 1_if2 2(7:)=0.

The delay system (2.1) is said to be pointwise
stabilizable if there esists a feedback control law
(2.6) such that the closed-loop system is pointwise
asymptotically stable. It is noted that the pointwise
asymptotic stability implies that the trajectory appro.
aches the origin but it does not say that the origin is
the only one point of convergence. We define a set
of function on 2(¢:;—7T,¢;) by

J—T, t,2={T0), ti—T<t<t;:
(i +T; ¥, ¢, w(.)=0)=0, {<t<t;)
(3.11)
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for a closed-loop delay system. It is believed that in
most practical systems 3(#,— 7, ;] will contain only
the null function.
Theorem 3.1 If the ordinary system (3.10) is sta-

bilized by a feedback control law

u(t)=K(t)z'(t),
then the control

u(t)= K@)z ()=K()[P(s(¢), )z(¢)

& f " 06, T A+ h(edE) (3.19)

3.12)

can stabilizes the delay system (2.1) in the following

sanse :
(1) z(si)=a(t;+ T)=xz(to+iL+T)—0 as i—oo
(i.e., pointwise asymptotically stable)

(3.14)
(i) =(¢), t;_,—T<t<¢; approaches 2(¢;.,—T,t:)
as {—", (3.15)

Proof: For the delay system (2.1) with a feedback
control law (3.13), an intervalwise predictor x'(f)=
zL7(¢) in (3.9) is introduced. Then this predictor
satisfies (3.10) with a feedback control law (3.12).
Since the system (3.10)~(3.12) is asymptotically
stable, there exists @>0 such that {|®x(Z, )<
ce ** "t where ®(f,f,) is the state transition matrix
of (3.10) and (3.12). Thus we have |z'(H)|<
ce " | ()] and O | KBO]- 12O
Mece *¢ 10| 2'(4)| where M=n1‘axl | K(#)] 1 <o, The
predictor (3.9) can be rewritten as

' (t)y=x(s; Z4 £, wl)=0)=a(s; x, ¢, u(.))
~["ots, DB(ECIE

Thus we have

la(s) =12(s; z4 £, w(.))]

= 12"+ 9, Bz |
<1201 +[ 1106, DB+ lu(e)] de

<1z'(t)] +Nf’|u<r>;df
<(ce~ "¢t + NMee ¢ 0L 1z*()|

—0 as t—oo
where N=sup [10(s, B(r)[| < _sup 119(s, 2)B(7)!
< oo, ‘The property (ii) follows from the assumption
that the system (3.10) is asymptotically stable. This
completes the proof.
The condition in (3.15) stronly suggests that any
oscillation will not likely occur and thus the origin is
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the umique point of convergence, although we can not
prove this formally. Many simulation tests confirmed
It remains to check how we can
The finite
dimensional system (3. 10) is uniformly  controliable
with an index ¢ if there exist «;>0 and «,>0 such
that

a I<W(t, t+8)= f :+6¢(s(r),z')B(t)B’(z)D'(s(r), 7)

dr<a,l (3.16)
This condition can be utilized for the stabilization

this conjecture.
stabilize the ordinary system "(2.10).

problems. Thus we define the following concept.

Definition 3.2 The delay system (2.1) is said to
be uniformly pretictively pointwise controllable with
indices {4L, T} if the non-delay system (3.10) with
L and T is uniformly controllable with an index &
(i.e., the condition (3.16) holds).

It has been known®? that the following control law

w(t)y=—B' @) (s(t), OW (¢, t+THz*(t)  (3.17)
stabilizes the system (3.10) provided the system
(3.10) is uniformly controllable with -the index 7.
Another possibility is the intervalwise moving control
IaW(ZZJ
u(t)=—B(H)p(s(t), W '(t, $(tNz'(2) (3.18

where the new horizon #(¢) is defined similarly as in
(3.8) with L and T replaced by the new interval
length and horizon distance L and 7. Although in®®
the stability property of the control law (3.18) is
given for the time invarianl systems it can be easily
extended to time-varying systems. It is noted that the
difference between the pointwise controllability in
(2.4) and the predictive pointwise controllability in
(3.16) is the first argument of the matrix @( , )in
the integrand. We summarize the above results.

Theorem 3.2. If the delay system (2.1) is uni-
formly predictively pointwise controllable with some
indices {8, L, T},
control law, particularly the control law (3.17) or
(3.18), in the sense of Theorem 3.1.

For ordinary systems the pointwise controllability,

then there exists a stabilizing

predictive pointwise controllability, spectral controlla-
bility and functionwise controllability are all equival-
ent, but it is believed that the predictive pointwise
than the

spectral and functionwisz controllability conditions and

controllability conditionis much weaker

slightly stronger than the pointwise controllability
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condition in delay systems as can be seen in Example
3.1 for time-invariant systems. It is not clear so far
whether the delay system (2.1) is stabilizable under
the pointwise controllabifity.

For time-invariant systems predictors and control
laws have simpler forms. For the time-.invariant
svstem (2.1) with constant matrices, A,, A,, and B,
the solution is given by

x(B)=x(t; zte, b, ()=t —to)2(ts)

t
+],° &t —r—m)Ax(r)dr

£y h

+ﬁ:@(t—r)Bu(r)dr (3.19)

where the state transition matrix is the solution to
the matrix differential equation

—dd;a)(t):A.,(b(t)-kAﬁt(t—h) (3.20)

with @(0)=I and &(¢)=0 for £<0. The controllability
matrix (2.4) is defined by

W(t):fo'q;(t—f)BB'qr(t—r)df @3.21)
The predictor (3.9) is defined by
28y =" T()=0(s(t)—)(2)

+.f"_has(s(t)-r—h)A,x(r)dr (3.22)

The non-delay system (3.10) obtained from time
invariant delay systems is unfortunately a time-

varying system as can be seen as

d_2(t)=0(s(t)—)Bult) (3.23)

ar”
since the argument s(¢)—¢ is not constant. Unlike the
ordinary time invariant systems the controllability
matrix in (3.16) can not be made of one argument
and is given by

W, t+9=]" " 0(s2)~0)BB 0 (s(0)~7)dz

(3.29)

The control law law (3.17) will be given by

wW)=—Bo'(sE)—OW ¢, e+T)2’(E),  (3.25)
and the one (3.18) by
w(t)=—B'¢ (s)—OW L, sz'@)  (3.26)

It is seen that the control laws (3.25) and (3.26)
have periodic feedback gains with the period L since
st+Ly=s{t)+L and WQE+L, t+L+T)=W(, ¢+ T).
An attempt will be made to obtain constant feedback
gain control laws in Section 5.

Example 3.1 Consider the delay system (2.1) with
constant matrices A,, A4,, and B. If {4, B} is cont-
rollable, the the system (2.1) is pointwise controllable
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regardless of A,. But for special cases of A,, the
system (2.1) can not be functionwise, nor F-controll-
able®*®, It can be shown that if ‘{A,, B} is cont-
rollable, then the system (2.1) is predictively point-
wise controllable with indices d=k/2, L=h, and T=
h/4, regardless of A,. This example loocks to show
that the predictive pointwise controllability is weaker
than the functionwise controllability and F-controlla-
bility.

The methods introduced in this section is two-stage
methods in the sense that first the predictors are
obtained and then the feedback control law are sought
for the ordinary predictor systems. In the next section
a mbving horizon regulator problem is introduced
which combines two-stage procedures into one and

requires weaker conditions.

4. Stabilization Via Intervalwise
Moving Regulator

A performance index for the regulator has been
considered a design parameter in order to get a satis-
factory feedback control law. Thus we take a perfor-
mance index as a closed-loop type index since it auto-
matically renders a closed-loop solution. We will find
the optimal control of the system (2.1) which mini-

mizes

J(u)=f"(”u'(r)u(f)dr “.1D
subject to

z(s(#))=0 “.2)

where s(¢) is defined in (3.8). The constraint (4.2)
can be writted as )

0=a()=0(s, Haty+ [ 05, v+R) Ae +h)a(e)ds

+[ o5, )B( Yt ae .3)

If the system (2.1) is pointwisz co‘nfro[lable on (¢, 5)
then the control which minimizes (4.1) is given by
u(t)=—B'(6)p'(s(2), &)W iz, s(e))(P(set), )x(t)
+f' KECREINCEINTOE

.
=—B{H)d ({0, YW UL, st)xBT(@)  (4.4)
where zLT(f)=x(¢) is defined in (3.9). It is the
equation (4.4) where the predictor is introduced
first. It is noted that the control law (3.18) and (4.4)
are quite different since the former uses the predictive
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<controllability matrix (3.16) and the latter the point-
wise controllability matrix (2.4). In order to avoid
the singularity in the feedback gain we take 7>0.
The important properties of the control law (4.4) are
stated in Theorem 4.1.

Theorem 4.1 If the system (2.1) is uniformly
pointwise controllable with an index &, then the cont-
rol law (4.4) is defined with T>>8,L>0.
if the system (2.1) is uniformly predictively point-
wise controllable with indices {4, L, T} then the
control law (4.4) stabilizes the system (2.1) in the
sense of (3.14) and (3.15).

Proof: Likewise as in (3.10) the predictor x%7(¢)
in (4.4) can be written as

2LT()=@(s(t), £)B(t)u(t)
=—o(s(t), £)BE)B () (s(t), W *
{t,5(£))=L7(2)

Moreover

2 F(t)xb(t) (4.5)
Consider an adjoint system of (4.5)
2t)=—F(t)z(¢t) (4.6)
‘with an associated scalar valued function
V(z(8), t)=z"{)W(t, s{t))=(2) 4.7

where W{(t,s(¢)) is a piecewise continuous function
and has a property ‘"’

W(t, r )< Wit 72), .57, (4.8
Since the system (2.1) is uniformly pointwise cont-
rollable with an index 4, we have

a2 * <V (=, t)<a, | 2|? 4.9
for some a,>0, a,>0 and T>4. Taking the deriva-
tive of (4.7) yields

V(z(8), )= (OW(, sit)=(t)+=" (W (¢, s(2))=(¢)

+ 2 (YWt s(e)E(t)
=z"()p(s(t), t)B()B'(£)p"(s(2), t)2(¢)=0
(4.10)
except discontinuous points {{,-+/L} 7=1,2,.... By
integrating of (4.10) we can get, for {;>t,+0J and
Q={t,+iL, 1=1,2,..},
Viz(ts), t5)— V(z(ta), 2a)

=[G, nat+ 33 S OW it b))
—WH(t_, s(t_N=(2)

= [ 00, DBOB (9 (s(2),)=(t)dt (4.11)

=2t 0. (¢, t0(s8), DBOB D0 (1), )

B,(t, la)dt z(ta) (4.12)
where @,(t, 7) is the state transition matrix of (4.6).
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The inequality (4.11) follows from (4.8). It is well
known that @.'(¢, r)=@(z, t) where ¢x(¢f, z) is the
state transition matrix of the system (4.5). Since the
pair {0, ¢(s{¢), £)B(¢)} is assumed to be uniformly
controllable, thus the system {—a(s(z), £)B(t)K(z),
o(s(t), £)B(¢)} is also uniformly conformly controllable
for the bounded K(¢). Therefore there exists a lower
bound in (4.12) such that
V(z(t)s, t5)— Vialta), to)=es| 2(25)]? (4.13)

for t;>¢,+6 and «;>0. It can be shown that z(#)
increases exponentially (s2e®*® for a similar proof).
Therefore the adjoint system (4.5) of the system
(4.6) is uniformly asymptotically stable. From Theo-
rem 3.1 follows the results mentioned in the theorem.
This completes the proof.

It is noted again that the control law (4.4) is
defined under the pointwise controllability condition,
although the stability property can be proved under
the predictively pointwise controllability. There are
strong indications that the control (4.4) might stabilize
the system (2.1) under the pointwise controllability
though we can not prove this claim. The control laws
(3.17) and (3.18) are defined under the predictively
pointwise controllability condition instead.

For time-invariant systems the control law (4. %)
can be written by

ult)=—B'O'(s(t) )W Hs(t)— t Xp(s(t) — ) x(¢t)

+J“ &(s{t)—7r—h)Ax(7)dr (4.14)
t-h

where

W)= ¢c—)BB 0 (t—0)dr. (4.15)

The gain in the control law (4.14) is periodic and
limited memory storage is necessary for implementa-
tion. In the next section we will attemt to obtain
constant feedback conirol laws for time-invariant
systems.

5. Pointwise Moving Predictors and
Regulators

While the interval moving horizons iniroduced in
Section 3 and 4 (Fig. 1.a) have some applications
for ordinary systems'®®, the pointwise moviny
horizons (Fig. 1.b) have been more successfully

applied?:182%,21) The pointwise moving horizons
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Fig. 1. Moving horizon
are defined from the intervalwise moving ! .rizons
by taking the interval length L=0. That is, for the
present time ¢, the horizon is defined by s(¢&)=¢-+T.
Thus the pointwise moving predictor is defined by
2 (=2 L) =27 =z + T; x, £, ul.)=0)
=@(t+ T, )z(t)
+[7 o+ T, e+ WA+ G.1)

This pointwise moving horizon is comparable to the
new predictor introduced for the linear systems with
delay in control only, whose solution is represented
by a(t;z{ts), to, e, u(.)) and predictor is given by“”
' (O)y=z(t+ T; z(),t, w,, u(.)=0) (5.2)
While the pointwise predictor (5.2) for the systems
with delayed controls satisfies an ordinary system for
any 720, the problem of the pointwise predictor
(5.1) for the systems with delay in the state is that
we can not obtain ordinary systems like (3.10).
However the pointwise moving horizon control laws
can be obtained directly from intervalwise moving
horizon control laws, (3.13) and (4.4),
L=0 provided the feedback gain exists. Thus a point-

by taking

wise moving horizon control law can be obtained from
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(3.13) as
u(t)= [llifg K(EN(e@+T, t)x(t)

+f:_hq>(t+ T, r+h)Ac+1)z(z)dr) (5.3)

provided the limit on K(¢£) exists when it is dependent.
on L. Unfortunately the control laws (3.17) and
(3.18) will not be defined satisfactorily in this case
since the controllahility matrix W(t, ¢+9) is given by

Wi, t+5)=£'+’¢(r+T, ©)B(r) B ()0’ (¢ + T, t)dz
(5.4)

and morelikely becomes singular unless the matrix

B(t) is nonsingular as can be seen for time-invariant

cases
Wi, ¢+8)=a( T)J: " B(e)B (1)deo (T).  (5.5)

However it is fortunate that the control law (4.4),
introduced from the intervalwise moving regulator,.
can perfectly be defined for the case of L=0. That
is, it becomes

ult)y=—B (o (t+T, HW ¢, t+T)x™(¢) (5.6)
where the predictor z7(f) is given in (5.1) and
W(t¢+T) in (2.4) is nonsingular under pointwise
controllability. The main advantage of the pointwise
moving horizon is that it renders constant gain pre-
dictors and control laws for time-invariant systems.
The pointwise predictor for time.invariant systems is
given by

2' @)=z ()=¢(T)x(t)

+Ji1¢( T—h—7)Ax(t+7)dr G.D

and the pointwise moving horizon control is given by
u(t)=—B' o' (TYW-YT)x7(¢). (5.8)
The problem for the these control laws (5.6)~(5.8)
is its stability. In order to check the stability, we
observe that the parameters in the intervalwise
(3.9 and (3.22), and
(4.4) and (4.14),

respect to L at the neighborhood of zero and thus

moving horizon predictors,

controllers, are continuous with

The plant

[ u(t)
X=Apx+ A x(t-h)+By

The controller

P
i
!
|
| Uit =0

|

¥
o(s{t}-tx(ti+ify dl(.\;(’.)—t—h)Alx.’r‘,drF

The predictor

Fig. 2. Structure of predictor and regulator methoas.
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the solution of the system (2.1) with these predictors
and controllers is continuously dependent on L from
the well known theorem on the continuous dependence
of the solution on parameters®®. From this we can
claim the following result.

Proposition 5.1, If the system (2.1) is asymptoti-
cally stable with the intervalwise moving horizon
control law (4.4) for any L>0,
moving horizon control law (5.6) with the system
(2.1) is at least stable.

Since the system (2.1) with the control law (4.4)
is shown to stabilize the system mostlikely in Theo-

then the pointwise

rem 4.1, -the control laws (5.6) and (5.8) are at
least stable in most cases. But there are strong indi-
cations that these controls are actually asymptotically
stable in the strict sense of Lyapunov. Some of indi-
cations are that as the interval L approaches as 1/#,
the distance of meighboring horizons, (7To+(G+1)/z+
T)—(t,+:i/n+T)=1/n, becomes smaller and thus the
gains in (4.4) and (5.8) more negative in some
sense. As the interval L approaches as 1/#, the solu-
tion tends to approach to the origin from (3.14) and
(3.15) and the predictive controllability with 6=T
becomes the pointwise controllability. Since the time-
invariant systems are more interesting the following
conjecture is made for these systems from the above
properties.

Conjecture If the time-invariant system (2.1) is
pointwise controllable with an index 7T >h, then the
control law (5.8)~(5.7) with T>h stabilizes the
time-invariant system (2.1).

We have checked the abive conjecture for the
second order systems with computer simulations and
found no exceptions. If the above conjecture ever
becomes true, the control law (5. 8)~ (5. 7) is simplest
among existing stabilizing control laws since existing
control laws require decomposition of infinite dimen-
sional state space, computation of the exact unstable
poles from infinite number of poles, or computation
of the operatortype Riccati equation. Even if the con-
jecture is not ture, it is clear that this control law
will stabilize maost systems. Thus we recommend the
control law (5.7)~(5.8) as the first candidate for
the test of the stabilization method of time invariant
systems (2.1).
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6. Conclusion

The feedback tontrol of delay systems has been an
important problem in the process industry. For those
linear systems with delay in the control, the Smith
predictor method®®*+ and the pointwise predictor
method®”18 can be utilized for stabilization under
weak conditions, both of which transforms systems
with delay into systems without delay in the frequ-
ency and time domains respectively. There have been
no such corresponding results for linear systems with
delay in the state.

‘This paper suggests, for the purpose of stabiliza-
tion, the intervalwise predictors, (3.9) and (3.19),
that transform delay systems into non-delay systems
(3.10) and (3.23) for
methods exist. Under the predictive pointwise controll-

wich many stahilization

ability, which is a slightly stronger condition than the
pointwise controllability, feedback
(3.17), (3.18), (3.25), and (3.26),
at least pointwise stabilize the

control laws,
are shown to
linear time-delay
systems with additional properties. In order to com-
bine two stages of the predictor method into cne, a
regulator problem, which incorporates the predictor
in it, has been suggested in this paper along with
stabilizing control laws, (4.4) and (4.14). While the
control laws (3.25) and (3.26) utilizing the predictor
method are defined under the predictive pointwise
controllability, the advantzge of the control laws,
(4.4) and (4.14), is that they are defined under the
pointwise controllability. Especially for the time in-
variant systems, feedback gains for the intervalwise
predictor and regulator methods are pereodic with the
period L. In order to obtain the constant feedback
gains, the pointwise regulator problem is suggested
which incorporates the pointwise predictor (5.7) and
the constant feedback control law (5.8). It is strongly
believed that the simplest control Jaw (5.8) stabilizes
the most practical systems under the pointwise con-
trollability.

The approach suggested in this paperis quite differ-
ent from the existing results in that the latter are
mathematically oriented employing the state decompo-
sition and infinite-time regulator in the infinite dimen-
sional space but this paper is practically oriented em-

ploying the finite dimensional space. Control laws in-
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troduced in this paper are simple and easy to implemt.

They will find many applications in the process

systems with delay in state.
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