• Title/Summary/Keyword: Finite Field Multiplier

Search Result 109, Processing Time 0.03 seconds

The Design of $GF(2^m)$ Multiplier using Multiplexer and AOP (Multiplexer와AOP를 적응한 $GF(2^m)$ 상의 승산기 설계)

  • 변기영;황종학;김흥수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.145-151
    • /
    • 2003
  • This study focuses on the hardware implementation of fast and low-complexity multiplier over GF(2$^{m}$ ). Finite field multiplication can be realized in two steps: polynomial multiplication and modular reduction using the irreducible polynomial and we will treat both operation, separately. Polynomial multiplicative operation in this Paper is based on the Permestzi's algorithm, and irreducible polynomial is defined AOP. The realization of the proposed GF(2$^{m}$ ) multipleker-based multiplier scheme is compared to existing multiplier designs in terms of circuit complexity and operation delay time. Proposed multiplier obtained have low circuit complexity and delay time, and the interconnections of the circuit are regular, well-suited for VLSI realization.

Efficient Finite Field Arithmetic Architectures for Pairing Based Cryptosystems (페어링 기반 암호시스템의 효율적인 유한체 연산기)

  • Chang, Nam-Su;Kim, Tae-Hyun;Kim, Chang-Han;Han, Dong-Guk;Kim, Ho-Won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.3
    • /
    • pp.33-44
    • /
    • 2008
  • The efficiency of pairing based cryptosystems depends on the computation of pairings. pairings is defined over finite fileds GF$(3^m)$ by trinomials due to efficiency. The hardware architectures for pairings have been widely studied. This paper proposes new adder and multiplier for GF(3) which are more efficient than previous results. Furthermore, this paper proposes a new unified adder-subtractor for GF$(3^m)$ based on the proposed adder and multiplier. Finally, this paper proposes new multiplier for GF$(3^m)$. The proposed MSB-first bit-serial multiplier for GF$(p^m)$ reduces the time delay by approximately 30 % and the size of register by half than previous LSB-first multipliers. The proposed multiplier can be applied to all finite fields defined by trinomials.

Design of Low-Latency Architecture for AB2 Multiplication over Finite Fields GF(2m) (유한체 GF(2m)상의 낮은 지연시간의 AB2 곱셈 구조 설계)

  • Kim, Kee-Won;Lee, Won-Jin;Kim, HyunSung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.2
    • /
    • pp.79-84
    • /
    • 2012
  • Efficient arithmetic design is essential to implement error correcting codes and cryptographic applications over finite fields. This article presents an efficient $AB^2$ multiplier in GF($2^m$) using a polynomial representation. The proposed multiplier produces the result in m clock cycles with a propagation delay of two AND gates and two XOR gates using O($2^m$) area-time complexity. The proposed multiplier is highly modular, and consists of regular blocks of AND and XOR logic gates. Especially, exponentiation, inversion, and division are more efficiently implemented by applying $AB^2$ multiplication repeatedly rather than AB multiplication. As compared to related works, the proposed multiplier has lower area-time complexity, computational delay, and execution time and is well suited to VLSI implementation.

Design of Bit-Parallel Multiplier over Finite Field $GF(2^m)$ (유한체 $GF(2^m)$상의 비트-병렬 곱셈기의 설계)

  • Seong, Hyeon-Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1209-1217
    • /
    • 2008
  • In this paper, we present a new bit-parallel multiplier for performing the bit-parallel multiplication of two polynomials in the finite fields $GF(2^m)$. Prior to construct the multiplier circuits, we consist of the vector code generator(VCG) to generate the result of bit-parallel multiplication with one coefficient of a multiplicative polynomial after performing the parallel multiplication of a multiplicand polynomial with a irreducible polynomial. The basic cells of VCG have two AND gates and two XOR gates. Using these VCG, we can obtain the multiplication results performing the bit-parallel multiplication of two polynomials. Extending this process, we show the design of the generalized circuits for degree m and a simple example of constructing the multiplier circuit over finite fields $GF(2^4)$. Also, the presented multiplier is simulated by PSpice. The multiplier presented in this paper use the VCGs with the basic cells repeatedly, and is easy to extend the multiplication of two polynomials in the finite fields with very large degree m, and is suitable to VLSI.

Parallelized Architecture of Serial Finite Field Multipliers for Fast Computation (유한체 상에서 고속 연산을 위한 직렬 곱셈기의 병렬화 구조)

  • Cho, Yong-Suk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 2007
  • Finite field multipliers are the basic building blocks in many applications such as error-control coding, cryptography and digital signal processing. Hence, the design of efficient dedicated finite field multiplier architectures can lead to dramatic improvement on the overall system performance. In this paper, a new bit serial structure for a multiplier with low latency in Galois field is presented. To speed up multiplication processing, we divide the product polynomial into several parts and then process them in parallel. The proposed multiplier operates standard basis of $GF(2^m)$ and is faster than bit serial ones but with lower area complexity than bit parallel ones. The most significant feature of the proposed architecture is that a trade-off between hardware complexity and delay time can be achieved.

Efficient Semi-systolic Montgomery multiplier over GF(2m)

  • Keewon, Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.69-75
    • /
    • 2023
  • Finite field arithmetic operations play an important role in a variety of applications, including modern cryptography and error correction codes. In this paper, we propose an efficient multiplication algorithm over finite fields using the Montgomery multiplication algorithm. Existing multipliers can be implemented using AND and XOR gates, but in order to reduce time and space complexity, we propose an algorithm using NAND and NOR gates. Also, based on the proposed algorithm, an efficient semi-systolic finite field multiplier with low space and low latency is proposed. The proposed multiplier has a lower area-time complexity than the existing multipliers. Compared to existing structures, the proposed multiplier over finite fields reduces space-time complexity by about 71%, 66%, and 33% compared to the multipliers of Chiou et al., Huang et al., and Kim-Jeon. As a result, our multiplier is proper for VLSI and can be successfully implemented as an essential module for various applications.

Design and FPGA Implementation of the Scalar Multiplier for a CryptoProcessor based on ECC(Elliptic Curve Cryptographics) (ECC(Elliptic Curve Crptographics) 기반의 보안프로세서를 위한 스칼라 곱셈기의 FPGA 구현)

  • Choi, Seon-Jun;Hwang, Jeong-Tae;Kim, Young-Chul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.1071-1074
    • /
    • 2005
  • The ECC(Elliptic Curve Cryptogrphics), one of the representative Public Key encryption algorithms, is used in Digital Signature, Encryption, Decryption and Key exchange etc. The key operation of an Elliptic curve cryptosystem is a scalar multiplication, hence the design of a scalar multiplier is the core of this paper. Although an Integer operation is computed in infinite field, the scalar multiplication is computed in finite field through adding points on Elliptic curve. In this paper, we implemented scalar multiplier in Elliptic curve based on the finite field $GF(2^{163})$. And we verified it on the Embedded digital system using Xilinx FPGA connected to an EISC MCU(Agent 2000). If my design is made as a chip, the performance of scalar multiplier applied to Samsung $0.35\;{\mu}m$ Phantom Cell Library is expected to process at the rate of 8kbps and satisfy to make up an encryption processor for the Embedded digital information home system.

  • PDF

Fast Sequential Optimal Normal Bases Multipliers over Finite Fields (유한체위에서의 고속 최적정규기저 직렬 연산기)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1207-1212
    • /
    • 2013
  • Arithmetic operations over finite fields are widely used in coding theory and cryptography. In both of these applications, there is a need to design low complexity finite field arithmetic units. The complexity of such a unit largely depends on how the field elements are represented. Among them, representation of elements using a optimal normal basis is quite attractive. Using an algorithm minimizing the number of 1's of multiplication matrix, in this paper, we propose a multiplier which is time and area efficient over finite fields with optimal normal basis.

Subquadratic Space Complexity Multiplier for GF($2^n$) Using Type 4 Gaussian Normal Bases

  • Park, Sun-Mi;Hong, Dowon;Seo, Changho
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.523-529
    • /
    • 2013
  • Subquadratic space complexity multipliers for optimal normal bases (ONBs) have been proposed for practical applications. However, for the Gaussian normal basis (GNB) of type t > 2 as well as the normal basis (NB), there is no known subquadratic space complexity multiplier. In this paper, we propose the first subquadratic space complexity multipliers for the type 4 GNB. The idea is based on the fact that the finite field GF($2^n$) with the type 4 GNB can be embedded into fields with an ONB.

Implementation of a LSB-First Digit-Serial Multiplier for Finite Fields GF(2m) (유한 필드 GF(2m)상에서의 LSB 우선 디지트 시리얼 곱셈기 구현)

  • Kim, Chang-Hun;Hong, Chun-Pyo;U, Jong-Jeong
    • The KIPS Transactions:PartA
    • /
    • v.9A no.3
    • /
    • pp.281-286
    • /
    • 2002
  • In this paper we, implement LSB-first digit-serial systolic multiplier for computing modular multiplication $A({\times})B$mod G ({\times})in finite fields GF $(2^m)$. If input data come in continuously, the implemented multiplier can produce multiplication results at a rate of one every [m/L] clock cycles, where L is the selected digit size. The analysis results show that the proposed architecture leads to a reduction of computational delay time and it has more simple structure than existing digit-serial systolic multiplier. Furthermore, since the propose architecture has the features of regularity, modularity, and unidirectional data flow, it shows good extension characteristics with respect to m and L.