• Title/Summary/Keyword: Field-enhanced

Search Result 1,509, Processing Time 0.027 seconds

Near-field Noise-emission Modeling for Monitoring Multimedia Operations in Mobile Devices

  • Song, Eakhwan;Choi, Jieun;Lee, Young-Jun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.6
    • /
    • pp.440-444
    • /
    • 2016
  • In this paper, an equivalent circuit model for near-field noise emission is proposed to implement a multimedia operation-monitoring system for mobile devices. The proposed model includes a magnetic field probe that captures noise emissions from multimedia components, and a transfer function for near-field noise coupling from a transmission line source to a magnetic field probe. The proposed model was empirically verified with transfer function measurements of near-field noise emissions from 10 kHz to 500 MHz. With the proposed model, a magnetic field probe was optimally designed for noise measurement on a camera module and an audio codec in a mobile device. It was demonstrated that the probe successfully captured the near-field noise emissions, depending on the operating conditions of the multimedia components, with enhanced sensitivity from a conventional reference probe.

Analysis of Current-Voltage characteristics of AlGaN/GaN HEMTs with a Stair-Type Gate structure (계단형 게이트 구조를 이용한 AlGN/GaN HEMT의 전류-전압특성 분석)

  • Kim, Dong-Ho;Jung, Kang-Min;Kim, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.6
    • /
    • pp.1-6
    • /
    • 2010
  • We present simulation results on DC characteristics of AlGaN/GaN HEMT having stair-type gate electrodes, in comparison with those of the conventional single gate AlGaN/GaN HEMTs and field-plate enhanced AlGaN/GaN HEMTs. In order to reduce the internal electric field near the gate electrode of conventional HEMT and thereby to increase their DC characteristics, we applied three-layered stacking electrode schemes to the standard AlGaN/GaN HEMT structure. As a result, we found that the internal electric field was decreased by 70% at the same drain bias condition and the transconductance (gm) was improved by 11.4% for the proposed stair-type gate AlGaN/GaN HEMT, compared with those of the conventional single gate and field-plate enhanced AlGaN/GaN HEMTs.

Microfluidic immunoassay using superparamagnetic nanoparticles in an enhanced magnetic field gradient (강화된 자기장 구배 하에서 나노자성입자를 이용한 미세유체 기반의 면역 측정)

  • Hahn, Young-Ki;Kang, Joo-H.;Kim, Kyu-Sung;Park, Je-Kyun
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.158-163
    • /
    • 2006
  • This paper reports a novel immunoassay method using superparamagnetic nanoparticles and an enhanced magnetic field gradient for the detection of protein in a microfluidic device. We use superparamagnetic nanoparticles as a label and fluorescent polystyrene beads as a solid support. Based on this platform, magnetic force-based microfluidic immunoassay is successfully applied to analyze the concentration of IgG as model analytes. In addition, we present ferromagnetic microstructure connected with a permanent magnet to increase magnetic flux density gradient (dB/dx, ${\sim}10^{4}$ T/m), which makes limit of detection reduced. The detection limit is reduced to about 1 pg/mL.

Enhanced Photoresponse of Plasmonic Terahertz Wave Detector Based on Silicon Field Effect Transistors with Asymmetric Source and Drain Structures

  • Ryu, Min Woo;Kim, Sung-Ho;Kim, Kyung Rok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.576-580
    • /
    • 2013
  • We investigate the enhanced effects of asymmetry ratio variations of the source and drain area in silicon (Si) field-effect transistor (FET). Photoresponse according to the variation of asymmetry difference between the width of source and drain are obtained by using the plasmonic terahertz (THz) wave detector simulation based on technology computer-aided design (TCAD) with the quasi-plasma 2DEG model. The simulation results demonstrate the potential of Si FETs with asymmetric source and drain structures as the promising plasmonic THz detectors.

Penning Discharge Assisted Chimical Vapor Deposition of Silicon (Penning 방전을 이용한 실리콘 CVD)

  • 김태훈;이지화
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.77-84
    • /
    • 1996
  • Silicon deposition by Penning discharge was carried out using a mixture of 5% $SiH_4/H_2$ and Ar gas, and the effects of the deposition conditions(gas mixing raito, substrate temperature. discharge power etc.) on the growth rate, crystallinity and morphology of the films deposited were investigated. The magnetic field(800 G) confined the plasma in the region between the two cathodes and enhanced the discharge current by a factor of a few hundreds below 1 mTorr. The magnetic field-enhanced plasma density resulted in a very large deposition rate of about 300 $\AA$/min at $SiH_4$ flow rate of 0.7 sccm and the substrate temperature of $800^{\circ}C$. Characterization of the films by Raman spectroscopy, X-ray diffraction, and scanning electron microscopy revealed that an epitaxial film with a smooth surface grows above 80$0^{\circ}C$, an amorphous film below $400^{\circ}C$, and a rough polycrystalline film at intermediate temperatures.

  • PDF

Effect of Geometric Parameters in a Newly Designed Microchannel

  • Heo H. S.;Suh Y. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.121-122
    • /
    • 2003
  • In this study a microchannel with various arrangement of blocks is newly proposed. This design comprises periodically arranged simple blocks. In this configuration, the stirring is greatly enhanced at a certain geometric parameter set. To characterize the flow field and the stirring effect both the numerical and experimental methods were employed. To obtain the velocity field, three-dimensional numerical computation to the Navier Stokes equations are performed by using a commercial code, FLUENT 6.0. The fluid-flow solutions are then cast into studying the characteristics of stirring with the aid of Lyapunov exponent. The numerical results show that the particles' trajectories in the microchannel heavily depend on the block arrangement. It was shown that the stirring is significantly enhanced at larger block-height and it reaches maximum when the height is 0.8 times the channel width. We also studied the effect of the block stagger angle, and it turns out that the stirring performance is the best at the block angel ${45^\circ}$.

  • PDF

Effects of Ginseng Radix and Ophiopogonis Tuber on Field Potentials in Rat Hippocampal and Cardiac Muscle Slices (인삼과 맥문동이 흰쥐 뇌와 심장의 field potential에 미치는 영향)

  • Lee Choong Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1463-1467
    • /
    • 2003
  • In the present study, the effects of Ginseng radix and Ophiopogonis tuber on field potentials in rat hippocampal slices and cardiac muscle slices were investigated by multi-channel extracellular recording using MED64 system. The field potentials in the brain slices represent synaptic transmission and nerve excitability, and the field potentials in heart muscles represent muscle contractility. The present results show that the aqueous extract of Ginseng radix enhanced field potentials in the both hippocampal slices and cardiac muscle slices. In contrast, the aqueous extract Ophiopogonis tuber exerted no significant effect on the field potentials in the hippocampal slices and cardiac muscle slices. These results suggest the possibility that Yin-Yang theory could be studied in relation with excitability in neurons and muscles.

Numerical Study of Shear-Enhanced Turbulent Diffusion (전단 증진된 난류확산의 수치적 연구)

  • Lee, Chang-Hun;Choe, Jae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.7
    • /
    • pp.944-951
    • /
    • 2001
  • The purpose of this study is to investigate the effect of shear on turbulent diffusion. Turbulent Couette flows at low Reynolds number are numerically simulated using a Lagrangian PDF method. Flow field and particle trajectories are computed and analyzed in detail. Statistics for particle dispersion obtained from numerical simulations is compared with the classical scaling relations for dispersion in a shear flow.

Field Emission Properties of Multiwalled Carbon Nanotubes Synthesized by Pin-to-Plate Type Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition (Pin-to-plate Type 대기압 PECVD 방법을 이용해 성장된 다중벽 탄소나노튜브의 전계방출 특성연구)

  • Park Jae-Beom;Kyung Se-Jin;Yeom Geun-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.374-379
    • /
    • 2006
  • In this study, carbon nanotubes (CNTs) were grown on glass substrates coated with Ni/Cr by an atmospheric pressure plasma enhanced chemical vapor deposition(AP-PECVD) and their structural and electrical characteristics were investigated as a possible application to the field emitter of field emission display (FED) devices. The substrate temperature ($400{\sim}500^{\circ}C$) were varied and the grown CNTs were multi wall CNTs (at $500^{\circ}C$, 15 - 20 layers of graphene sheets, distance of each layer : 0.3nm, inner diameter: 10 - 15nm, outer diameter: 30 - 40nm). The ratio of defective carbon peak to graphite carbon peak of the CNTs grown at $500^{\circ}C$ (C measured by fourier transform(FT)-Raman was 0.772 $I_D / I_G$ ratio. When field emission properties were measured, the turn-on field was $2.92V/{\mu}m$ and the emission field at $1mA/cm^2$ was $5.325V /{\mu}m$.