Penning Discharge Assisted Chimical Vapor Deposition of Silicon

Penning 방전을 이용한 실리콘 CVD

  • 김태훈 (서울대학교 공업화학과) ;
  • 이지화 (서울대학교 공업화학과)
  • Published : 1996.03.01

Abstract

Silicon deposition by Penning discharge was carried out using a mixture of 5% $SiH_4/H_2$ and Ar gas, and the effects of the deposition conditions(gas mixing raito, substrate temperature. discharge power etc.) on the growth rate, crystallinity and morphology of the films deposited were investigated. The magnetic field(800 G) confined the plasma in the region between the two cathodes and enhanced the discharge current by a factor of a few hundreds below 1 mTorr. The magnetic field-enhanced plasma density resulted in a very large deposition rate of about 300 $\AA$/min at $SiH_4$ flow rate of 0.7 sccm and the substrate temperature of $800^{\circ}C$. Characterization of the films by Raman spectroscopy, X-ray diffraction, and scanning electron microscopy revealed that an epitaxial film with a smooth surface grows above 80$0^{\circ}C$, an amorphous film below $400^{\circ}C$, and a rough polycrystalline film at intermediate temperatures.

Keywords

References

  1. J. Crystal Growth v.81 J.C. Bean
  2. Appl. Phys. Lett. v.49 S. Nishida;T. Shiimoto;A. Yamada;S. Karasawa;M. Konagui;K. Takahashi
  3. Appl. Phys. Lett. v.48 B.S. Meyerson
  4. J. Appl. Phys. v.64 H. Yamada;Y. Torii
  5. J. Electrochem. Soc. v.136 J. H. Comfort;R. Reif
  6. J. Non-crystalline Solids v.137 C.C. Tsai;G.B. Anderson;R. Thompson
  7. Appl. Phys. Lett. v.66 S.J. Deboer(et al.)
  8. J. Appl. Phys. v.62 L.M. Garverick(et al.)
  9. J. Appl. Phys. v.57 T.J. Donahue;R. Reif
  10. Appl. Phys. Lett. v.55 T. Yew;R. Reif
  11. Appl. Phys. Lett. v.44 T.J. Donahue;W.R. Burger;R. Reif
  12. Appl. Phys. Lett. v.62 C.H. Chen(et al.)
  13. J. Electronic materials v.19 B. Anthony(et al)
  14. Appl. Phys. Lett. v.59 S,V, Hattangady(et al)
  15. J. Cryst. Growth v.147 C.H. Chen;T. Yew
  16. J. Electrochem. Soc. v.141 M.D. Shieh;C. Lee;T. Yew
  17. J. Electronic Materials v.19 T. Hsu(et al)
  18. J. Appl. Phys. v.30 J. Backus
  19. J. Appl. Phys. v.32 R.L. Jepsen
  20. J. Appl. Phys. v.33 W. Knauer
  21. Rev. Sci. Instrum. v.61 Y. Yoshida(et al.)
  22. J. Appl. Phys. v.69 Y. Sato;H. Ogawa;S. Yamada;T. Yamada;T. Kohno
  23. J. Vac. Sci. Technol. v.A6 N.T. Peacock;R.N. Peacock
  24. J. Vac. Sci. Technol. v.A8 N.T. Peacock;R.N. Peacock
  25. J. Appl. Phys. v.43 W.D. Westwood;R. Boynton
  26. J. Appl. Phys. v.63 no.7 A. Gallagher
  27. J. Appl. Phys. v.75 J. Jang;S.C. Kim;K.C. Park;S.K. Kim
  28. Appl. Phys. Lett. v.64 T. Kaneko;M. Wakagi;K. Onisawa;T. Minemura
  29. J. Appl. Phys. v.62 M.J. Kushner
  30. J. Chem. Phys. v.79 J. Balamuta;M.F. Godle;Y.-S. Ho