• 제목/요약/키워드: Field Multiplication

검색결과 250건 처리시간 0.028초

Block Filtering과 QFT를 이용한 실시간 음장 효과구현 (Real-Tim Sound Field Effect Implementation Using Block Filtering and QFT)

  • 손성용;서정일;한민수
    • 대한음성학회지:말소리
    • /
    • 제51호
    • /
    • pp.85-98
    • /
    • 2004
  • It is almost impossible to generate the sound field effect in real time with the time-domain linear convolution because of its large multiplication operation requirement. To solve this, three methods are introduced to reduce the number of multiplication operations in this paper. Firstly, the time-domain linear convolution is replaced with the frequency-domain circular convolution. In other words, the linear convolution result can be derived from that of the circular convolution. This technique reduces the number of multiplication operations remarkably, Secondly, a subframe concept is introduced, i.e., one original frame is divided into several subframes. Then the FFT is executed for each subframe and, as a result, the number of multiplication operations can be reduced. Finally, the QFT is used in stead of the FFT. By combining all the above three methods into our final the SFE generation algorithm, the number of computations are reduced sufficiently and the real-time SFE generation becomes possible with a general PC.

  • PDF

크기 가변 유한체 연산기를 이용한 타원곡선 암호 프로세서 (Elliptic Curve Cryptography Coprocessors Using Variable Length Finite Field Arithmetic Unit)

  • 이동호
    • 대한전자공학회논문지SD
    • /
    • 제42권1호
    • /
    • pp.57-67
    • /
    • 2005
  • 고속 스칼라곱 연산은 타원곡선 암호 응용을 위해서 매우 중요하다. 보안 상황에 따라 유한체의 크기를 변경하려면 타원곡선 암호 보조프로세서가 크기 가변 유한체 연산 장치를 제공하여야 한다. 크기 가변 유한체 연산기의 효율적인 연산 구조를 연구하기 위하여 전형적인 두 종류의 스칼라곱 연산 알고리즘을 FPGA로 구현하였다. Affine 좌표계 알고리즘은 나눗셈 연산기를 필요로 하며, projective 좌표계 알고리즘은 곱셈 연산기만 사용하나 중간 결과 저장을 위한 메모리가 더 많이 소요된다. 크기 가변 나눗셈 연산기는 각 비트마다 궤환 신호선을 추가하여야 하는 문제점이 있다. 본 논문에서는 이로 인한 클록 속도저하를 방지하는 간단한 방법을 제안하였다. Projective 좌표계 구현에서는 곱셈 연산으로 널리 사용되는 디지트 serial 곱셈구조를 사용하였다. 디지트 serial 곱셈기의 크기 가변 구현은 나눗셈의 경우보다 간단하다. 최대 256 비트 크기의 연산이 가능한 크기 가변 유한체 연산기를 이용한 암호 프로세서로 실험한 결과, affine 좌표계 알고리즘으로 스칼라곱 연산을 수행한 시간이 6.0 msec, projective 좌표계 알고리즘의 경우는 1.15 msec로 나타났다. 제안한 타원곡선 암호 프로세서를 구현함으로써, 하드웨어 구현의 경우에도 나눗셈 연산을 사용하지 않는 projective 좌표계 알고리즘이 속도 면에서 우수함을 보였다. 또한, 메모리의 논리회로에 대한 상대적인 면적 효율성이 두 알고리즘의 하드웨어 구현 면적 요구에 큰 영향을 미친다.

고속 알고리즘을 이용한 음장 효과 구현 (Sound Field Effect Implementation Using East Algorithm)

  • 손성용;서정일;한민수
    • 대한음성학회지:말소리
    • /
    • 제47호
    • /
    • pp.85-96
    • /
    • 2003
  • It is difficult to implement sound field effect on real time using linear convolution in time domain because linear convolution needs much multiply operations. In this paper three ways is introduced to reduce multiplication operations. Firstly, linear convolution in time domain is replaced with circular convolution in frequency domain. It means that it operates multiplication in place of convolution. Secondly, one frame will be divided into several frames. It will reduce the multiplication operation in processing that transforms time domain into frequency domain. Finally, QFT will be used in place of FFT. Three ways result much reduction in multiplication operations. The reduction of the multiplication operation makes the real time implementation possible.

  • PDF

8-bit 환경에서 Lookup table 기반의 효율적인 곱셈 알고리즘 (Efficient lookup Table-based Multiplication Algorithm on 8-bit Processor)

  • 서석충;정해일;한동국;홍석희
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2008년도 정보통신설비 학술대회
    • /
    • pp.323-326
    • /
    • 2008
  • This paper describes some field multiplication algorithm over GF($2^m$) on 8-bit processor. Through performance comparisons among algorithm, we show that our proposal is faster than existing algorithms. The proposed algorithm save 26.38% of running time compared with naive comb multiplication algorithm which is a kind of lookup-table (LUT) based algorithm. With the proposed algorithm, a scalar multiplication over GF($2^{163}$) can be computed within 1.04 secs on 8-bit MICAz sensor mote.

  • PDF

IC 카드를 위한 polynomial 기반의 타원곡선 암호시스템 연산기 설계 (Design of Elliptic Curve Cryptographic Coprocessor over binary fields for the IC card)

  • 최용제;김호원;김무섭;박영수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(2)
    • /
    • pp.305-308
    • /
    • 2001
  • This paper describes the design of elliptic curve cryptographic (ECC) coprocessor over binary fields for the If card. This coprocessor is implemented by the shift-and-add algorithm for the field multiplication algorithm. And the modified almost inverse algorithm(MAIA) is selected for the inverse multiplication algorithm. These two algorithms is merged to minimize the hardware size. Scalar multiplication is performed by the binary Non Adjacent Format(NAF) method. The ECC we have implemented is defined over the field GF(2$^{163}$), which is a SEC-2 recommendation[7]..

  • PDF

여분 기저를 이용한 멀티플렉서 기반의 유한체 곱셈기 (Multiplexer-Based Finite Field Multiplier Using Redundant Basis)

  • 김기원
    • 대한임베디드공학회논문지
    • /
    • 제14권6호
    • /
    • pp.313-319
    • /
    • 2019
  • Finite field operations have played an important role in error correcting codes and cryptosystems. Recently, the necessity of efficient computation processing is increasing for security in cyber physics systems. Therefore, efficient implementation of finite field arithmetics is more urgently needed. These operations include addition, multiplication, division and inversion. Addition is very simple and can be implemented with XOR operation. The others are somewhat more complicated than addition. Among these operations, multiplication is the most important, since time-consuming operations, such as exponentiation, division, and computing multiplicative inverse, can be performed through iterative multiplications. In this paper, we propose a multiplexer based parallel computation algorithm that performs Montgomery multiplication over finite field using redundant basis. Then we propose an efficient multiplexer based semi-systolic multiplier over finite field using redundant basis. The proposed multiplier has less area-time (AT) complexity than related multipliers. In detail, the AT complexity of the proposed multiplier is improved by approximately 19% and 65% compared to the multipliers of Kim-Han and Choi-Lee, respectively. Therefore, our multiplier is suitable for VLSI implementation and can be easily applied as the basic building block for various applications.

전자서명을 위한 ECC기반 유한체 산술 연산기 구현에 관한 연구 (Design of finite field arithmtic for EC-KCDSA)

  • 최경문;황정태;류상준;김영철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.935-938
    • /
    • 2003
  • The performance of elliptic curve based on public key cryptosystems is mainly appointed by the efficiency of the underlying finite field arithmetic. This work describes a finite field multiplier and divider which is implemented using SystemC. Also this present an efficient hardware for performing the elliptic curve point multiplication using the polynomial basis representation. In order to improve the speed of the multiplier with as a little extra hardware as possible, adopted hybrid finite field multiplication and finite field divider.

  • PDF

듀얼 필드 모듈러 곱셈을 지원하는 몽고메리 곱셈기 (Montgomery Multiplier Supporting Dual-Field Modular Multiplication)

  • 김동성;신경욱
    • 한국정보통신학회논문지
    • /
    • 제24권6호
    • /
    • pp.736-743
    • /
    • 2020
  • 모듈러 곱셈은 타원곡선 암호 (elliptic curve cryptography; ECC), RSA 등의 공개키 암호에서 중요하게 사용되는 산술연산 중 하나이며, 모듈러 곱셈기의 성능은 공개키 암호 하드웨어의 성능에 큰 영향을 미치는 핵심 요소가 된다. 본 논문에서는 워드기반 몽고메리 모듈러 곱셈 알고리듬의 효율적인 하드웨어 구현에 대해 기술한다. 본 논문의 모듈러 곱셈기는 SEC2 ECC 표준에 정의된 소수체 GF(p)와 이진체 GF(2k) 상의 11가지 필드 크기를 지원하여 타원곡선 암호 프로세서의 경량 하드웨어 구현에 적합하도록 설계되었다. 제안된 곱셈기 구조는 부분곱 생성 및 가산 연산과 모듈러 축약 연산이 파이프라인 방식으로 처리하며, 곱셈 연산에 소요되는 클록 사이클 수를 약 50% 줄였다. 설계된 모듈러 곱셈기를 FPGA 디바이스에 구현하여 하드웨어 동작을 검증하였으며, 65-nm CMOS 표준셀로 합성한 결과 33,635개의 등가 게이트로 구현되었고, 최대 동작 클록 주파수는 147 MHz로 추정되었다.

Scalar Multiplication on Elliptic Curves by Frobenius Expansions

  • Cheon, Jung-Hee;Park, Sang-Joon;Park, Choon-Sik;Hahn, Sang-Geun
    • ETRI Journal
    • /
    • 제21권1호
    • /
    • pp.28-39
    • /
    • 1999
  • Koblitz has suggested to use "anomalous" elliptic curves defined over ${\mathbb{F}}_2$, which are non-supersingular and allow or efficient multiplication of a point by and integer, For these curves, Meier and Staffelbach gave a method to find a polynomial of the Frobenius map corresponding to a given multiplier. Muller generalized their method to arbitrary non-supersingular elliptic curves defined over a small field of characteristic 2. in this paper, we propose an algorithm to speed up scalar multiplication on an elliptic curve defined over a small field. The proposed algorithm uses the same field. The proposed algorithm uses the same technique as Muller's to get an expansion by the Frobenius map, but its expansion length is half of Muller's due to the reduction step (Algorithm 1). Also, it uses a more efficient algorithm (Algorithm 3) to perform multiplication using the Frobenius expansion. Consequently, the proposed algorithm is two times faster than Muller's. Moreover, it can be applied to an elliptic curve defined over a finite field with odd characteristic and does not require any precomputation or additional memory.

  • PDF

십진수의 자리이동-덧셈 곱셈법 (Shift-and-Add Multiplication Algorithm for Decimal System)

  • 이상운
    • 한국인터넷방송통신학회논문지
    • /
    • 제14권2호
    • /
    • pp.121-126
    • /
    • 2014
  • 큰 -자리수의 2개 10진수에 대한 곱셈을 보다 빠르게 수행하는 방법은 존재하는가? 이 문제는 수학과 컴퓨터공학 분야에서 미해결 문제로 남아 있다. 이 문제에 대해 곱셈 횟수를 줄이는 연구로는 Karatsuba와 Toom-Kook 알고리즘이 있다. 본 논문은 곱셈 횟수를 줄이는 방법과는 완전히 별개로, 10진수 곱셈을 전적으로 덧셈만으로 효율적으로 수행하는 방법을 제안하였다. 제안된 방법은 2진수의 자리이동-덧셈법만으로도 RSA-100과 같이 컴퓨터로 수행이 불가한 매우 큰 자리수의 10진수 곱셈을 수행할 수 있음을 보였다. 제안된 방법은 수행 복잡도 (n) 의 덧셈으로 곱셈을 수행한다.