• Title/Summary/Keyword: Fibonacci and Lucas numbers

Search Result 23, Processing Time 0.016 seconds

FIBONACCI AND LUCAS NUMBERS ASSOCIATED WITH BROCARD-RAMANUJAN EQUATION

  • Pongsriiam, Prapanpong
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.511-522
    • /
    • 2017
  • We explicitly solve the diophantine equations of the form $$A_{n_1}A_{n_2}{\cdots}A_{n_k}{\pm}1=B^2_m$$, where $(A_n)_{n{\geq}0}$ and $(B_m)_{m{\geq}0}$ are either the Fibonacci sequence or Lucas sequence. This extends the result of D. Marques [9] and L. Szalay [13] concerning a variant of Brocard-Ramanujan equation.

A COMPLETE FORMULA FOR THE ORDER OF APPEARANCE OF THE POWERS OF LUCAS NUMBERS

  • Pongsriiam, Prapanpong
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.447-450
    • /
    • 2016
  • Let $F_n$ and $L_n$ be the nth Fibonacci number and Lucas number, respectively. The order of appearance of m in the Fibonacci sequence, denoted by z(m), is the smallest positive integer k such that m divides $F_k$. Marques obtained the formula of $z(L^k_n)$ in some cases. In this article, we obtain the formula of $z(L^k_n)$ for all $n,k{\geq}1$.

GENERALIZED LUCAS NUMBERS OF THE FORM 5kx2 AND 7kx2

  • KARAATLI, OLCAY;KESKIN, REFIK
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1467-1480
    • /
    • 2015
  • Generalized Fibonacci and Lucas sequences ($U_n$) and ($V_n$) are defined by the recurrence relations $U_{n+1}=PU_n+QU_{n-1}$ and $V_{n+1}=PV_n+QV_{n-1}$, $n{\geq}1$, with initial conditions $U_0=0$, $U_1=1$ and $V_0=2$, $V_1=P$. This paper deals with Fibonacci and Lucas numbers of the form $U_n$(P, Q) and $V_n$(P, Q) with the special consideration that $P{\geq}3$ is odd and Q = -1. Under these consideration, we solve the equations $V_n=5kx^2$, $V_n=7kx^2$, $V_n=5kx^2{\pm}1$, and $V_n=7kx^2{\pm}1$ when $k{\mid}P$ with k > 1. Moreover, we solve the equations $V_n=5x^2{\pm}1$ and $V_n=7x^2{\pm}1$.

ON CONDITIONALLY DEFINED FIBONACCI AND LUCAS SEQUENCES AND PERIODICITY

  • Irby, Skylyn;Spiroff, Sandra
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.1033-1048
    • /
    • 2020
  • We synthesize the recent work done on conditionally defined Lucas and Fibonacci numbers, tying together various definitions and results generalizing the linear recurrence relation. Allowing for any initial conditions, we determine the generating function and a Binet-like formula for the general sequence, in both the positive and negative directions, as well as relations among various sequence pairs. We also determine conditions for periodicity of these sequences and graph some recurrent figures in Python.

NOTES ON GENERALIZED FIBONACCI NUMBERS AND MATRICES

  • Halim, Ozdemir;Sinan, Karakaya;Tugba, Petik
    • Honam Mathematical Journal
    • /
    • v.44 no.4
    • /
    • pp.473-484
    • /
    • 2022
  • In this study, some new relations between generalized Fibonacci numbers and matrices are given. The work is designed in three stages: Firstly, it is obtained a relation between generalized Fibonacci numbers and integer powers of the matrices X satisfying the relation X2 = pX +qI, and also, many results are derived from obtained relation. Then, it is established more general relation between generalized Fibonacci numbers and the square matrices X satisfying the condition X2 = VnX - (-q)nI. Finally, some applications and numerical examples related to the obtained results are given.

GENERALIZED FIBONACCI AND LUCAS NUMBERS OF THE FORM wx2 AND wx2 ∓ 1

  • Keskin, Refik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1041-1054
    • /
    • 2014
  • Let $P{\geq}3$ be an integer and let ($U_n$) and ($V_n$) denote generalized Fibonacci and Lucas sequences defined by $U_0=0$, $U_1=1$; $V_0= 2$, $V_1=P$, and $U_{n+1}=PU_n-U_{n-1}$, $V_{n+1}=PV_n-V_{n-1}$ for $n{\geq}1$. In this study, when P is odd, we solve the equations $V_n=kx^2$ and $V_n=2kx^2$ with k | P and k > 1. Then, when k | P and k > 1, we solve some other equations such as $U_n=kx^2$, $U_n=2kx^2$, $U_n=3kx^2$, $V_n=kx^2{\mp}1$, $V_n=2kx^2{\mp}1$, and $U_n=kx^2{\mp}1$. Moreover, when P is odd, we solve the equations $V_n=wx^2+1$ and $V_n=wx^2-1$ for w = 2, 3, 6. After that, we solve some Diophantine equations.

On Sums of Products of Horadam Numbers

  • Cerin, Zvonko
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.3
    • /
    • pp.483-492
    • /
    • 2009
  • In this paper we give formulae for sums of products of two Horadam type generalized Fibonacci numbers with the same recurrence equation and with possibly different initial conditions. Analogous improved alternating sums are also studied as well as various derived sums when terms are multiplied either by binomial coefficients or by members of the sequence of natural numbers. These formulae are related to the recent work of Belbachir and Bencherif, $\v{C}$erin and $\v{C}$erin and Gianella.

ON THE g-CIRCULANT MATRICES

  • Bahsi, Mustafa;Solak, Suleyman
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.695-704
    • /
    • 2018
  • In this paper, firstly we compute the spectral norm of g-circulant matrices $C_{n,g}=g-Circ(c_0,c_1,{\cdots},c{_{n-1}})$, where $c_i{\geq}0$ or $c_i{\leq}0$ (equivalently $c_i{\cdot}c_j{\geq}0$). After, we compute the spectral norms, determinants and inverses of the g-circulant matrices with the Fibonacci and Lucas numbers.