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GENERALIZED LUCAS NUMBERS

OF THE FORM 5kx2 AND 7kx2

Olcay Karaatlı and Refi̇k Keski̇n

Abstract. Generalized Fibonacci and Lucas sequences (Un) and (Vn)
are defined by the recurrence relations Un+1 = PUn+QUn−1 and Vn+1 =
PVn +QVn−1, n ≥ 1, with initial conditions U0 = 0, U1 = 1 and V0 = 2,
V1 = P. This paper deals with Fibonacci and Lucas numbers of the
form Un(P,Q) and Vn(P,Q) with the special consideration that P ≥ 3
is odd and Q = −1. Under these consideration, we solve the equations
Vn = 5kx2, Vn = 7kx2, Vn = 5kx2±1, and Vn = 7kx2±1 when k | P with
k > 1. Moreover, we solve the equations Vn = 5x2 ± 1 and Vn = 7x2 ± 1.

1. Introduction

Let P and Q be nonzero integers such that P 2 + 4Q 6= 0. Generalized
Fibonacci sequence (Un(P,Q)) and Lucas sequence (Vn(P,Q)) are defined as
follows:

U0(P,Q) = 0, U1(P,Q) = 1, Un+1(P,Q) = PUn(P,Q) +QUn−1(P,Q) (n ≥ 1)

and

V0(P,Q) = 2, V1(P,Q) = P, Vn+1(P,Q) = PVn(P,Q) +QVn−1(P,Q) (n ≥ 1).

The numbers Un = Un(P,Q) and Vn = Vn(P,Q) are called the n-th gen-
eralized Fibonacci and Lucas numbers, respectively. Furthermore, generalized
Fibonacci and Lucas numbers for negative subscripts are defined as

U−n = U−n(P,Q) = −Un(P,Q)/(−Q)n

and

V−n = V−n(P,Q) = Vn(P,Q)/(−Q)n

for n ≥ 1. If α =
P+

√
P 2+4Q

2 and β =
P−

√
P 2+4Q

2 are the roots of the equation

x2 − Px − Q = 0, then we have the following well known expressions named
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Binet’s formulas

Un = Un(P,Q) =
αn − βn

α− β
and Vn = Vn(P,Q) = αn + βn

for all n ∈ Z. Since Un = Un(−P,Q) = (−1)nUn(P,Q) and Vn = Vn(−P,Q) =
(−1)nVn(P,Q), it will be assumed that P ≥ 1. Moreover, we assume that
P 2 + 4Q > 0. Special cases of the sequences (Un) and (Vn) are known. If
P = Q = 1, then (Un(1, 1)) is the familiar Fibonacci sequence (Fn) and the
sequence (Vn(1, 1)) is the familiar Lucas sequence (Ln). If P = 2 and Q = 1,
we have the well known Pell sequence (Pn) and Pell–Lucas sequence (Qn). For
more information about generalized Fibonacci and Lucas sequences, the reader
can follow [3, 8, 9, 10].

Generalized Fibonacci and Lucas numbers of the form kx2 have been inves-
tigated by many authors and progress in determining the square or k times
a square terms of Un and Vn has been made in certain special cases. Inter-
ested readers can consult [5] or [14] for a brief history of this subject. In [11],
the authors, applying only congruence properties of sequences, determined all
indices n such that Un = x2, Un = 2x2, Vn = x2, and Vn = 2x2 for all odd
relatively prime values of P and Q. Furthermore, the same authors [12] solved
Vn = kx2 under some assumptions on k. In [1], when P is odd, Cohn solved
Vn = Px2 and Vn = 2Px2 with Q = ±1. In [14], the authors determined,
assuming Q = 1, all indices n such that Vn(P, 1) = kx2 when k | P and P is
odd, where k is a square-free positive divisor of P. The values of n have been
found for which Vn(P,−1) is of the form kx2, 2kx2, kx2 ± 1, and 2kx2± 1 with
k | P and k > 1 [4]. Moreover, the values of n have been found for which
Vn(P,−1) is of the form 2x2±1, 3x2−1, and 6x2±1 [4] and the author give all
integer solutions of the preceding equations. Our results in this paper add to
the above list the values of n for which Vn(P,−1) is of the form 5kx2, 5kx2±1,
7kx2, and 7kx2 ± 1 when k | P and k > 1. Furthermore, we determine all
indices n such that Vn(P,−1) = 5x2 ± 1 and Vn(P,−1) = 7x2 ± 1 and then
give all integer solutions of these equations. We need to state here that our
method is elementary and used by Cohn, Ribenboim and McDaniel in [1] and
[12], respectively.

2. Preliminaries

In this section, we present some theorems, lemmas, and identities, which will
be needed during the proof of the main theorems. Instead of Un(P,−1) and
Vn(P,−1), we sometimes write Un and Vn. Throughout the paper

(

∗

∗

)

denotes
the Jacobi symbol.

Now we can give the following lemma without proof since its proof can be
done by induction.
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Lemma 1. Let n be a positive integer. Then

Vn ≡
{

±2 (modP 2) if n is even,

±nP (modP 2) if n is odd.

We omit the proof of the following lemma due to Keskin and Demirtürk [2].

Lemma 2. All positive integer solutions of the equation x2−5y2 = 1 are given

by (x, y) = (L3z/2, F3z/2) with z even natural number.

The following theorem is well known (see [6] or [7]).

Theorem 1. All positive integer solutions of the equation x2 − (P 2− 4)y2 = 4
are given by (x, y) = (Vn, Un) with n ≥ 1.

The proofs of the following two theorems can be found in [13].

Theorem 2. Let n ∈ N ∪ {0} , m, r ∈ Z and m be a nonzero integer. Then

(2.1) U2mn+r ≡ Ur (modUm)

and

(2.2) V2mn+r ≡ Vr (modUm).

Theorem 3. Let n ∈ N ∪ {0} and m, r ∈ Z. Then

(2.3) U2mn+r ≡ (−1)nUr (mod Vm)

and

(2.4) V2mn+r ≡ (−1)nVr (modVm).

The following identities are well known.

(2.5) U2n = UnVn,

(2.6) V 2
n − (P 2 − 4)U2

n = 4,

(2.7) V2n = V 2
n − 2.

From Lemma 1 and identity (2.6), we have

(2.8) 5 | Vn if and only if 5 | P and n is odd

and
(2.9)
7 | Vn if and only if 7 | P and n is odd or P 2 ≡ 2 (mod 7) and n ≡ 2 (mod 4).

If r ≥ 1, then by (2.7),

(2.10) V2r ≡ ±2 (modP ).

If r ≥ 2, then by (2.7),

(2.11) V2r ≡ 2 (modP ).

It is obvious that

(2.12) 5 | U5 if P 2 ≡ −1 (mod 5),
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(2.13) 7 | U4 if P 2 ≡ 2 (mod 7).

From now on, unless otherwise stated, we assume that P ≥ 3 is odd and
Q = −1.

By using (2.2) together with the fact 8 | U3, we get

(2.14) V6q+r ≡ Vr (mod 8).

Moreover, by using induction, it can be seen that

V2r ≡ 7 (mod 8)

and thus

(2.15)

(

2

V2r

)

= 1

and

(2.16)

(−1

V2r

)

= −1

for r ≥ 1.
If r ≥ 1, then

(2.17)

(

5

V2r

)

=







−1 if 5 | P,
1 if P 2 ≡ 1 (mod 5),

−1 if P 2 ≡ −1 (mod 5).

Moreover,

(2.18)

(

7

V2r

)

= ±1 if 7 | P and r ≥ 1,

(2.19)

(

7

V2r

)

= −1 if 7 | P and r ≥ 2,

and

(2.20)

(

7

V2r

)

= 1 if P 2 ≡ 1 (mod 7) and r ≥ 1.

If r ≥ 2, then V2r ≡ −1
(

mod P 2
−3
2

)

and thus

(2.21)

(

(P 2 − 3)/2

V2r

)

=

(

P 2 − 3

V2r

)

= 1.

If 3 ∤ P, then V2r ≡ −1 (mod 3) for r ≥ 1. Therefore we have

(2.22)

(

3

V2r

)

= 1.

If 3 | P, then V2r ≡ −1 (mod 3) for r ≥ 2 and therefore

(2.23)

(

3

V2r

)

= 1.
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Besides, we have

(2.24)

(

P − 1

V2r

)

=

(

P + 1

V2r

)

= 1.

3. Main theorems

We assume from this point on that n is a positive integer.

Theorem 4. If Vn = 5kx2 for some integer x, then n = 1.

Proof. Assume that Vn = 5kx2 for some integer x. Then by (2.8), it follows
that 5 | P and n is odd. Let n = 6q + r with r ∈ {1, 3, 5} . Then by (2.14), we
obtain Vn = V6q+r ≡ Vr (mod 8). Hence, we have Vn ≡ V1, V3, V5 (mod 8). This
implies that Vn = 5kx2 ≡ P, 6P (mod 8) and therefore kx2 ≡ 5P, 6P (mod 8).
On the other hand, using the fact that k | P, we may write P = kM with
odd M. Thus, we get kMx2 ≡ 5PM, 6PM (mod 8), implying that Px2 ≡
5PM, 6PM (mod 8). Since P is odd, then the preceding congruence gives x2 ≡
5M, 6M (mod 8). This shows that M ≡ 5 (mod 8) since M is odd. Now suppose
that n > 1. Then n = 4q ± 1 = 2 · 2ra ± 1, 2 ∤ a and r ≥ 1. Substituting this
value of n into Vn = 5kx2 and using (2.4) give

5kx2 = Vn = V4q±1 = V2·2ra±1 ≡ −V1 ≡ −P (modV2r ).

This shows that
5x2 ≡ −M (mod V2r )

since (k, V2r ) = 1. According to the above congruence, we have
(

5

V2r

)

=

(−1

V2r

)(

M

V2r

)

.

By using the facts that M ≡ 5 (mod 8), M | P and identity (2.10), we get
(

M

V2r

)

=

(

V2r

M

)

=

(±2

M

)

=

(

2

M

)

= −1.

On the other hand, this is impossible since
(

5
V2r

)

= −1 by (2.17) and
(

−1
V2r

)

=

−1 by (2.16). Thus, n = 1, as claimed. �

By using Theorem 1, we can give the following corollary.

Corollary 1. The equation 25P 2x4 − (P 2− 4)y2 = 4 has no integer solutions.

Theorem 5. Let k | P with k > 1. Then there is no integer x such that

Vn = 5kx2 + 1.

Proof. Assume that Vn = 5kx2 + 1 for some integer x. Then by Lemma 1, we
have n is even. Let n = 2m for some m > 0. Thus, by (2.7), we get Vn =
V2m = V 2

m − 2 = 5kx2 +1, implying that V 2
m ≡ 3 (mod 5), a contradiction. �

Corollary 2. The equation (5Px2 + 1)2 − (P 2 − 4)y2 = 4 has no integer

solutions.



1472 OLCAY KARAATLI AND REFİK KESKİN

Theorem 6. Let k | P with k > 1. Then there is no integer x such that

Vn = 5kx2 − 1.

Proof. Assume that Vn = 5kx2 − 1 for some integer x. Then by Lemma 1, n is
even. We divide the proof into three cases.

Case 1 : Assume that 5 | P. Then by Lemma 1, it follows that Vn ≡
±2 (mod 5), which contradicts the fact that Vn ≡ 4 (mod 5).

Case 2 : Assume that P 2 ≡ −1 (mod 5). Then we immediately have from
(2.12) that 5 | U5. Let n = 10q + r with r ∈ {0, 2, 4, 6, 8} . By (2.2), we get
Vn = V10q+r ≡ Vr (modU5), implying that Vn ≡ V0, V2, V4, V6, V8 (mod 5). This
shows that Vn ≡ 2 (mod 5), which contradicts the fact that Vn ≡ 4 (mod 5).

Case 3 : Assume that P 2 ≡ 1 (mod 5). Since n is even, n = 2m for some
m > 0. Hence, we get

5kx2 − 1 = Vn = V2m = V 2
m − 2

by (2.7). If m is odd, then P | Vm by Lemma 1 and so we get k | 1, a
contradiction. Thus, m is even. Let m = 2u for some u > 0. Then n = 4u and
therefore

5kx2 − 1 = V4u ≡ V0 ≡ 2 (modU2)

by (2.2), which implies that

5kx2 ≡ 3 (modP ).

Since k | P, it follows that k | 3 and therefore k = 3. So, we conclude that 3 | P.
In this case, we have n = 4u and thus by (2.2), we have

15x2 − 1 = Vn = V4u ≡ V0 (modU2),

implying that
15x2 ≡ 3 (modP ).

Since 3 | P, it is seen that 5x2 ≡ 1 (modP/3). This shows that
(

5
P/3

)

= 1.

We are in the case that P 2 ≡ 1 (mod 5). So, P ≡ 1, 4 (mod 5). A simple
computation shows that P/3 ≡ ±2 (mod 5). Hence, we have

1 =

(

5

P/3

)

=

(

P/3

5

)

=

(±2

5

)

= −1,

a contradiction. �

Corollary 3. The equation (5Px2 − 1)2 − (P 2 − 4)y2 = 4 has no integer

solutions.

Theorem 7. If Vn = 5x2 + 1, then n = 1 and V1 = 5x2 + 1 where x is even.

Proof. Assume that Vn = 5x2+1 for some integer x. If n is even, then n = 2m
and therefore Vn = V2m = V 2

m − 2 by (2.7). This implies that V 2
m ≡ 3 (mod 5),

a contradiction. Thus, n is odd.
Case 1 : Assume that 5 | P. Since n is odd, it follows from Lemma 1 that

5 | Vn, implying that 5 | 1, a contradiction.
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Case 2 : Assume that P 2 ≡ 1 (mod 5). If n > 1, then n = 4q±1 = 2 ·2ra±1,
2 ∤ a and r ≥ 1. Thus,

5x2 = Vn − 1 ≡ −V1 − 1 ≡ −(P + 1) (mod V2r )

by (2.4). By using (2.16), (2.17), and (2.24), it is seen that

1 =

(−1

V2r

)(

5

V2r

)(

P + 1

V2r

)

= −1,

a contradiction. So, n = 1. This implies that P = 5x2 + 1 with x even.
Case 3 : Assume that P 2 ≡ −1 (mod 5). If P ≡ 1 (mod 4), since n is odd, we

can write n = 4q ± 1. Thus, 5x2 + 1 = Vn ≡ V1 ≡ P (modU2) by (2.2). This
implies that

(3.1) 5x2 ≡ −1 (modP ).

Since P 2 ≡ −1 (mod 5), it follows that P ≡ ±2 (mod 5). Hence, we have
(

5

P

)

=

(

P

5

)

=

(±2

5

)

= −1.

On the other hand, using the fact that P ≡ 1 (mod 4), we get
(−1

P

)

= (−1)
P−1

2 = 1.

And so, (3.1) is impossible. Now if P ≡ 3 (mod 4), let n = 6q + r with
r ∈ {1, 3, 5}. Hence, by (2.14), we have

5x2 + 1 = Vn = V6q+r ≡ Vr ≡ V1, V3, V5 (mod 8),

implying that

5x2 + 1 ≡ P, 6P (mod 8).

If x is even, then P, 6P ≡ 1 (mod 4), which is impossible since P ≡ 3 (mod 4).
If x is odd, then P, 6P ≡ 6 (mod 8), which is impossible since P ≡ 3, 7 (mod 8).
This completes the proof. �

Corollary 4. The equation (5x2 + 1)2 − (P 2 − 4)y2 = 4 has integer solutions

only when P = 5x2 + 1 with x even.

Theorem 8. If Vn = 5x2 − 1, then n = 1 and V1 = 5x2 − 1 with x is even, or

n = 2 and P = L3z/2 and x = F3z/2 where z is even.

Proof. Assume that Vn = 5x2 − 1 for some integer x. Dividing the proof into
three cases, we have

Case 1 : Assume that 5 | P . Lemma 1 implies that Vn ≡ 0,±2 (mod 5),
which contradicts Vn = 5x2 − 1.

Case 2 : Assume that P 2 ≡ 1 (mod 5). If n > 1 is odd, then n = 4q ± 1 =
2 · 2ra± 1, 2 ∤ a and r ≥ 1. Thus,

5x2 − 1 = Vn ≡ −V1 ≡ −P (mod V2r ),
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implying that

5x2 ≡ −(P − 1) (modV2r ).

By using (2.16), (2.17), and (2.24), it is seen that

1 =

(−1

V2r

)(

5

V2r

)(

P − 1

V2r

)

= −1,

which is impossible. So n = 1 and P = 5x2 − 1 with x even. Now if n is even,
then n = 2m for some m > 0. If m > 1 is odd, then n = 2(4q± 1) = 2 · 2ra± 2,
2 ∤ a and r ≥ 2. Thus,

5x2 − 1 = Vn ≡ −V2 ≡ −(P 2 − 2) (modV2r ),

implying that

5x2 ≡ −(P 2 − 3) (modV2r ).

By using (2.16), (2.17), and (2.21), it is seen that

1 =

(−1

V2r

)(

5

V2r

)(

P 2 − 3

V2r

)

= −1,

a contradiction. Hence, we have m = 1 and therefore n = 2. Substituting this
value of n into Vn = 5x2 − 1 gives V2 = P 2 − 2 = 5x2 − 1, i.e., P 2 − 5x2 = 1.
By Lemma 2, we get P = L3z/2 and x = F3z/2 with z even natural number.
If m is even, then m = 2u for some u > 0 and therefore n = 4u = 2 · 2ra, 2 ∤ a
and r ≥ 1. Thus, by (2.4)

5x2 − 1 = Vn = V4u ≡ −V0 ≡ −2 (modV2r ),

implying that

5x2 ≡ −1 (modV2r ).

But this is impossible since
(

5
V2r

)

= 1 by (2.17) and
(

−1
V2r

)

= −1 by (2.16).

Case 3 : Assume that P 2 ≡ −1 (mod 5). So, P ≡ ±2 (mod 5). If n is odd,
then we can write n = 4q ± 1. Thus, 5x2 − 1 = Vn ≡ V1 (modU2) by (2.2).
This implies that 5x2 ≡ 1 (modP ). But this is impossible since

1 =

(

5

P

)

=

(

P

5

)

=

(±2

5

)

= −1.

If n ≡ 2 (mod 4), where n ≥ 6, then n = 2(4q)± 2. This shows that 5x2 − 1 =
Vn ≡ V2 (modV2) by (2.4), implying that 5x2 ≡ 1 (modP 2 − 2). But this is
impossible since

1 =

(

5

P 2 − 2

)

=

(

P 2 − 2

5

)

=

(−3

5

)

= −1.

And so n = 2. Substituting this value of n into Vn = 5x2 − 1 gives P 2 −
2 = 5x2 − 1, implying that P 2 ≡ 1 (mod 5), which is impossible since P 2 ≡
−1 (mod 5). Now if n ≡ 0 (mod 4), then n = 4u for some u. By (2.7), we have
5x2 − 1 = Vn = V4u = V 2

2u − 2, which implies that V 2
2u − 1 = 5x2. That is,
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(V2u − 1)(V2u + 1) = 5x2. Clearly, d = (V2u − 1, V2u + 1) = 1 or 2. If d = 1,
then either

(3.2) V2u − 1 = a2, V2u + 1 = 5b2

or

(3.3) V2u − 1 = 5a2, V2u + 1 = b2

for some integers a and b. It can be easily seen that (3.2) and (3.3) are impos-
sible. If d = 2, then either

(3.4) V2u − 1 = 2a2, V2u + 1 = 10b2

or

(3.5) V2u − 1 = 10a2, V2u + 1 = 2b2

for some integers a and b. Obviously, by (2.7), we get (3.5) is impossible since
V 2
u ≡ 3 (mod 5) in this case. Suppose (3.4) is satisfied. Then by (2.7), we have

(3.6) V 2
u − 3 = 2a2.

If 3 ∤ a, then a2 ≡ 1 (mod 3) and therefore we get V 2
u ≡ 2 (mod 3), which is

impossible. Hence, we have 3 | a. This implies that 3 | Vu. For the case when
3 | a and 3 | Vu, we easily see from (3.6) that 9 | 3, a contradiction. This
completes the proof. �

Corollary 5. The equation (5x2 − 1)2 − (P 2 − 4)y2 = 4 has integer solutions

only when P = 5x2 − 1 with x even or P = L3z/2 with z even.

Theorem 9. If Vn = 7kx2 with k | P and k > 1, then n = 1.

Proof. Suppose that Vn = 7kx2 for some integer x. Then by Lemma 1, we see
that n is odd. And since 7 | Vn and n is odd, it follows from (2.9) that 7 | P.
Then by (2.14), we have Vn ≡ V1, V3, V5 ≡ P, 6P (mod 8). This implies that
7kx2 ≡ P, 6P (mod 8), i.e., kx2 ≡ 2P, 7P (mod 8). Since k | P, we may write
P = kM with odd M. Thus, we get kMx2 ≡ 2PM, 7PM (mod 8). And so
x2 ≡ 2M, 7M (mod 8). This shows that M ≡ 7 (mod 8) since M is odd. Now
suppose n > 1. Then n = 4q ± 1 = 2 · 2ra ± 1, 2 ∤ a and r ≥ 1. Substituting
this value of n into Vn = 7kx2 and using (2.4) give

7kx2 = Vn ≡ −V1 ≡ −P (modV2r ).

This shows that
7x2 ≡ −M (mod V2r )

since (k, V2r ) = 1. Thus, we have

1 =

(

7

V2r

)(−1

V2r

)(

M

V2r

)

.

If r ≥ 2, then by (2.16), it is seen that
(

−1
V2r

)

= −1. On the other hand,
(

7
V2r

)

= −1 by (2.19). Besides, using M |P and identity (2.11), we get
(

M
V2r

)

=
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(−1)
(

2
M

)

= −1. This means that 1 = −1, a contradiction. Thus, r = 1. But

in this case, since
(

−1
V2r

)

= −1 by (2.16),
(

7
V2r

)

= 1 by (2.18), and
(

M
V2r

)

= 1

by (2.10), we again get a contradiction. So, we conclude that n = 1. �

Corollary 6. The equation 49P 2x4 − (P 2− 4)y2 = 4 has no integer solutions.

Theorem 10. Let k | P with k > 1. Then the equation Vn = 7kx2 + 1 has no

integer solutions.

Proof. Suppose that Vn = 7kx2 + 1 for some integer x. Then by Lemma 1, we
have n is even and therefore n = 2m for some m > 0. By (2.7), we get Vn =
V2m = V 2

m − 2 = 7kx2 + 1, implying that V 2
m ≡ 3 (mod 7), a contradiction. �

Corollary 7. The equation (7Px2 + 1)2 − (P 2 − 4)y2 = 4 has no integer

solutions.

Theorem 11. Let k | P with k > 1. Then the equation Vn = 7kx2 − 1 has no

integer solutions.

Proof. Suppose that Vn = 7kx2 − 1 for some integer x. Then by Lemma 1, it
is seen that n is even. Dividing the proof into four cases, we have,

Case 1 : Assume that 7 | P. Then by Lemma 1, it follows that Vn ≡
±2 (mod 7), which contradicts the fact that Vn ≡ 6 (mod 7).

Case 2 : Assume that P 2 ≡ 2 (mod 7). Then it is easily seen from (2.13)
that 7 | U4. Since n is even, n = 8q + r with r ∈ {0, 2, 4, 6} , so by (2.2), Vn ≡
V0, V2, V4, V6 (modU4), implying that Vn ≡ 0, 2 (mod 7), which is impossible.

Case 3 : Assume that P 2 ≡ 4 (mod 7). Then P ≡ 2, 5 (mod 7). On the
other hand, it can be easily seen that Vn ≡ 2, 5 (mod 7) in this case. But this
contradicts the fact that Vn ≡ 6 (mod 7).

Case 4 : Assume that P 2 ≡ 1 (mod 7). Since n = 2m, we get Vn = V2m =
V 2
m − 2 = 7kx2 − 1, i.e., V 2

m = 7kx2 + 1. If m is odd, then P | Vm by Lemma 1
and therefore we obtain k | 1, a contradiction. Thus, m is even. Let m = 2u
for some u > 0. Then n = 4u and therefore by (2.2), we have

7kx2 − 1 = V4u ≡ V0 ≡ 2 (modU2),

which implies that
7kx2 ≡ 3 (modP ).

Since k | P, it follows that k | 3 and this means that k = 3. Hence, we find that
3 | P. In this case, we have n = 4u = 2 · 2ra, 2 ∤ a and r ≥ 1. And thus,

21x2 − 1 = Vn ≡ −V0 ≡ −2 (modV2r ).

This shows that
(

3

V2r

)(

7

V2r

)

=

(−1

V2r

)

.

If r ≥ 2, then
(

3
V2r

)

= 1 by (2.23) and
(

7
V2r

)

= 1 by (2.20). But since
(

−1
V2r

)

= −1 by (2.16), we get a contradiction. So, r = 1. This means that
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n = 4u with u odd. By (2.7), we have 21x2 − 1 = Vn = V4u = V 2
2u − 2,

which implies that V 2
2u − 1 = 21x2. That is, (V2u − 1)(V2u +1) = 21x2. Clearly,

d = (V2u − 1, V2u + 1) = 1 or 2. If d = 1, then either

V2u − 1 = a2, V2u + 1 = 21b2,

V2u − 1 = 3a2, V2u + 1 = 7b2,

V2u − 1 = 7a2, V2u + 1 = 3b2,

or
V2u − 1 = 21a2, V2u + 1 = b2.

A simple computation shows that all the above equalities are impossible. Now
if d = 2, then

(3.7) V2u − 1 = 2a2, V2u + 1 = 42b2,

(3.8) V2u − 1 = 6a2, V2u + 1 = 14b2,

(3.9) V2u − 1 = 14a2, V2u + 1 = 6b2,

or

(3.10) V2u − 1 = 42a2, V2u + 1 = 2b2.

If we combine the two equations in (3.7), we get a2 ≡ 6 (mod 7), a contradiction.
By using (2.7), we see that (3.9) and (3.10) are impossible since V 2

u ≡ 3 (mod 7)
in both cases. Now assume that (3.8) is satisfied. Let u > 1, and so 2u =
2 · 2ra± 2, 2 ∤ a and r ≥ 2. Thus, we obtain by (2.4) that

14b2 − 1 = V2u = V2·2ra±2 ≡ −V2 ≡ −(P 2 − 2) (modV2r ),

implying that
7b2 ≡ −(P 2 − 3)/2 (mod V2r ).

But this is impossible since
(

7
V2r

)

= 1 by (2.20),
(

−1
V2r

)

= −1 by (2.16), and
(

(P 2
−3)/2
V2r

)

= 1 by (2.21). As a consequence, we get u = 1 and therefore n = 4.

Substituting n = 4 into Vn = 21x2 − 1 gives V4 = (P 2 − 2)2 − 2 = 21x2 − 1,
i.e., (P 2 − 2)2 − 21x2 = 1. Since all positive integer solutions of the equation
u2 − 21v2 = 1 are given by (u, v) = (Vs(110,−1)/2, 12Us(110,−1)) with s ≥ 1,
we get P 2− 2 = Vs(110,−1)/2 for some s ≥ 0. Thus, Vs(110,−1) = 2P 2− 4. It
can be shown that s is odd. Taking s = 4q±1 and using this into Vs(110,−1)/2
give

2P 2 − 4 = Vs ≡ V1 (modV1),

implying that
2P 2 ≡ 4 (mod 5).

Hence, we readily obtain that P 2 ≡ 2 (mod 5), which is impossible. This
completes the proof. �

Corollary 8. The equation (7Px2 − 1)2 − (P 2 − 4)y2 = 4 has no integer

solutions.
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Theorem 12. If Vn = 7x2 + 1, then n = 1 and V1 = 7x2 + 1 where x is even.

Proof. Suppose that Vn = 7x2+1 for some integer x. If n is even, then n = 2m
and therefore Vn = V2m = V 2

m − 2 by (2.7). This implies that V 2
m ≡ 3 (mod 7),

which is impossible. Thus, n is odd. Dividing the remainder of the proof into
four cases, we have

Case 1 : Assume that 7 | P. Since n is odd, it follows from Lemma 1 that
7 | Vn, implying that 7 | 1, a contradiction.

Case 2 : Assume that P 2 ≡ 1 (mod 7). If n > 1, then n = 4q±1 = 2 ·2ra±1,
2 ∤ a and r ≥ 1. Thus,

7x2 = Vn − 1 ≡ −V1 − 1 ≡ −(P + 1) (mod V2r )

by (2.4). By using (2.20), (2.16), and (2.24), it is seen that

1 =

(

7

V2r

)(−1

V2r

)(

P + 1

V2r

)

= −1,

a contradiction. So, n = 1. This implies that P = 7x2 + 1 with x even.
Case 3 : Assume that P 2 ≡ 2 (mod 7). Hence, P ≡ 3, 4 (mod 7). Moreover,

it can be easily seen that 7 | V2. Since n = 4q ± 1, it follows from (2.4)
that Vn = V4q±1 ≡ ±V1 (mod V2), implying that Vn ≡ 3, 4 (mod 7), which is
impossible.

Case 4 : Assume that P 2 ≡ 4 (mod 7). Hence, P ≡ 2, 5 (mod 7). In this case,
it can be easily shown by induction that

Vn ≡
{

2 (mod 7) if n is even,
P (mod 7) if n is odd.

This implies that Vn ≡ 2, 5 (mod 7), which is impossible. This completes the
proof. �

Corollary 9. The equation (7x2 + 1)2 − (P 2 − 4)y2 = 4 has integer solutions

only when P = 7x2 + 1 with even x.

Theorem 13. If Vn = 7x2 − 1, then n = 1 and V1 = 7x2 − 1 with x is even,

or n = 2 and P = Vk(16,−1)/2 and x = 3Uk(16,−1) where k is even.

Proof. Suppose that Vn = 7x2 − 1 for some x > 0.
Case 1 : Assume that 7 | P. Then by Lemma 1, Vn ≡ 0,±2 (mod 7), and so

Vn 6= 7x2 − 1.
Case 2 : Assume that P 2 ≡ 1 (mod 7). If n is odd, then we can write

n = 4q ± 1 = 2 · 2ra± 1, 2 ∤ a and r ≥ 1. Hence, we get

7x2 − 1 = Vn ≡ −V1 ≡ −P (mod V2r ),

implying that

7x2 ≡ −(P − 1) (modV2r ).
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By using (2.20), (2.16), and (2.24), we immediately have

1 =

(

7

V2r

)(−1

V2r

)(

P − 1

V2r

)

= −1,

which is impossible. If n ≡ 0 (mod 4), then n = 4u for some u. Hence, we get

7x2 − 1 = Vn ≡ −V0 ≡ −2 (modV2r ),

implying that

7x2 ≡ −1 (modV2r ).

But this is impossible since
(

7
V2r

)

= 1 by (2.20) and
(

−1
V2r

)

= −1 by (2.16). If

n ≡ 2 (mod 4) with n ≥ 6, then n = 2(4q ± 1) = 2 · 2ra ± 2, 2 ∤ a and r ≥ 2.
Hence, we have

7x2 − 1 = Vn ≡ −V2 ≡ −(P 2 − 2) (modV2r ),

implying that

7x2 ≡ −(P 2 − 3) (modV2r ).

By using (2.20), (2.16), and (2.21), we readily obtain

1 =

(

7

V2r

)(−1

V2r

)(

P 2 − 3

V2r

)

= −1,

a contradiction. So n = 2, and Vn = 7x2 − 1 gives V2 = P 2 − 2 = 7x2 − 1, i.e.,
P 2 − 7x2 = 1. Since all positive integer solutions of the equation u2 − 7v2 = 1
are given by (u, v) = (Vk(16,−1)/2, 3Uk(16,−1)) with k ≥ 1, it follows that
P = Vk(16,−1)/2 for positive even k, since P is odd.

Case 3 : Assume that P 2 ≡ 2 (mod 7). And so 7 | V2, and if we write
n = 4q + r with r ∈ {0, 1, 2, 3} , then

Vn = V2·2q±r ≡ ±Vr ≡ ±{V0, V1, V2, V3} (modV2),

i.e.,

Vn ≡ 0, 2, 3, 4, 5 (mod 7),

which is impossible.
Case 4 : Assume that P 2 ≡ 4 (mod 7). So, P ≡ 2, 5 (mod 7). Using the fact

that

Vn ≡
{

2 (mod 7) if n is even
P (mod 7) if n is odd

gives Vn ≡ 2, 5 (mod 7), which is impossible. This completes the proof. �

Corollary 10. The equation (7x2 − 1)2 − (P 2 − 4)y2 = 4 has integer solutions

only when P = 7x2 − 1 with x even or P = Vk(16,−1)/2 with k even.
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