Bull. Korean Math. Soc. **52** (2015), No. 5, pp. 1467–1480 http://dx.doi.org/10.4134/BKMS.2015.52.5.1467

GENERALIZED LUCAS NUMBERS OF THE FORM $5kx^2$ AND $7kx^2$

Olcay Karaatli and Refik Keskin

ABSTRACT. Generalized Fibonacci and Lucas sequences (U_n) and (V_n) are defined by the recurrence relations $U_{n+1} = PU_n + QU_{n-1}$ and $V_{n+1} = PV_n + QV_{n-1}$, $n \ge 1$, with initial conditions $U_0 = 0$, $U_1 = 1$ and $V_0 = 2$, $V_1 = P$. This paper deals with Fibonacci and Lucas numbers of the form $U_n(P,Q)$ and $V_n(P,Q)$ with the special consideration that $P \ge 3$ is odd and Q = -1. Under these consideration, we solve the equations $V_n = 5kx^2$, $V_n = 7kx^2$, $V_n = 5kx^2\pm 1$, and $V_n = 7kx^2\pm 1$ when $k \mid P$ with k > 1. Moreover, we solve the equations $V_n = 5x^2 \pm 1$ and $V_n = 7x^2 \pm 1$.

1. Introduction

Let P and Q be nonzero integers such that $P^2 + 4Q \neq 0$. Generalized Fibonacci sequence $(U_n(P,Q))$ and Lucas sequence $(V_n(P,Q))$ are defined as follows:

$$U_0(P,Q) = 0, U_1(P,Q) = 1, U_{n+1}(P,Q) = PU_n(P,Q) + QU_{n-1}(P,Q) \ (n \ge 1)$$

and

$$V_0(P,Q) = 2, V_1(P,Q) = P, V_{n+1}(P,Q) = PV_n(P,Q) + QV_{n-1}(P,Q) \ (n \ge 1).$$

The numbers $U_n = U_n(P,Q)$ and $V_n = V_n(P,Q)$ are called the *n*-th generalized Fibonacci and Lucas numbers, respectively. Furthermore, generalized Fibonacci and Lucas numbers for negative subscripts are defined as

$$U_{-n} = U_{-n}(P,Q) = -U_n(P,Q)/(-Q)^n$$

and

$$V_{-n} = V_{-n}(P,Q) = V_n(P,Q)/(-Q)^n$$

for $n \ge 1$. If $\alpha = \frac{P + \sqrt{P^2 + 4Q}}{2}$ and $\beta = \frac{P - \sqrt{P^2 + 4Q}}{2}$ are the roots of the equation $x^2 - Px - Q = 0$, then we have the following well known expressions named

O2015Korean Mathematical Society

Received June 5, 2014; Revised January 22, 2015.

²⁰¹⁰ Mathematics Subject Classification. 11B37, 11B39, 11B50.

Key words and phrases. generalized Fibonacci numbers, generalized Lucas numbers, congruences.

Binet's formulas

$$U_n = U_n(P,Q) = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
 and $V_n = V_n(P,Q) = \alpha^n + \beta^n$

for all $n \in \mathbb{Z}$. Since $U_n = U_n(-P,Q) = (-1)^n U_n(P,Q)$ and $V_n = V_n(-P,Q) = (-1)^n V_n(P,Q)$, it will be assumed that $P \ge 1$. Moreover, we assume that $P^2 + 4Q > 0$. Special cases of the sequences (U_n) and (V_n) are known. If P = Q = 1, then $(U_n(1,1))$ is the familiar Fibonacci sequence (F_n) and the sequence $(V_n(1,1))$ is the familiar Lucas sequence (L_n) . If P = 2 and Q = 1, we have the well known Pell sequence (P_n) and Pell-Lucas sequence (Q_n) . For more information about generalized Fibonacci and Lucas sequences, the reader can follow [3, 8, 9, 10].

Generalized Fibonacci and Lucas numbers of the form kx^2 have been investigated by many authors and progress in determining the square or k times a square terms of U_n and V_n has been made in certain special cases. Interested readers can consult [5] or [14] for a brief history of this subject. In [11], the authors, applying only congruence properties of sequences, determined all indices n such that $U_n = x^2$, $U_n = 2x^2$, $V_n = x^2$, and $V_n = 2x^2$ for all odd relatively prime values of P and Q. Furthermore, the same authors [12] solved $V_n = kx^2$ under some assumptions on k. In [1], when P is odd, Cohn solved $V_n = Px^2$ and $V_n = 2Px^2$ with $Q = \pm 1$. In [14], the authors determined, assuming Q = 1, all indices n such that $V_n(P, 1) = kx^2$ when $k \mid P$ and P is odd, where k is a square-free positive divisor of P. The values of n have been found for which $V_n(P, -1)$ is of the form kx^2 , $2kx^2$, $kx^2 \pm 1$, and $2kx^2 \pm 1$ with $k \mid P$ and k > 1 [4]. Moreover, the values of n have been found for which $V_n(P,-1)$ is of the form $2x^2 \pm 1$, $3x^2 - 1$, and $6x^2 \pm 1$ [4] and the author give all integer solutions of the preceding equations. Our results in this paper add to the above list the values of n for which $V_n(P, -1)$ is of the form $5kx^2$, $5kx^2 \pm 1$, $7kx^2$, and $7kx^2 \pm 1$ when $k \mid P$ and k > 1. Furthermore, we determine all indices n such that $V_n(P,-1) = 5x^2 \pm 1$ and $V_n(P,-1) = 7x^2 \pm 1$ and then give all integer solutions of these equations. We need to state here that our method is elementary and used by Cohn, Ribenboim and McDaniel in [1] and [12], respectively.

2. Preliminaries

In this section, we present some theorems, lemmas, and identities, which will be needed during the proof of the main theorems. Instead of $U_n(P, -1)$ and $V_n(P, -1)$, we sometimes write U_n and V_n . Throughout the paper $\left(\frac{*}{*}\right)$ denotes the Jacobi symbol.

Now we can give the following lemma without proof since its proof can be done by induction.

Lemma 1. Let n be a positive integer. Then

$$V_n \equiv \begin{cases} \pm 2 \pmod{P^2} & \text{if } n \text{ is even,} \\ \pm nP \pmod{P^2} & \text{if } n \text{ is odd.} \end{cases}$$

We omit the proof of the following lemma due to Keskin and Demirtürk [2].

Lemma 2. All positive integer solutions of the equation $x^2 - 5y^2 = 1$ are given by $(x, y) = (L_{3z}/2, F_{3z}/2)$ with z even natural number.

The following theorem is well known (see [6] or [7]).

Theorem 1. All positive integer solutions of the equation $x^2 - (P^2 - 4)y^2 = 4$ are given by $(x, y) = (V_n, U_n)$ with $n \ge 1$.

The proofs of the following two theorems can be found in [13].

Theorem 2. Let $n \in \mathbb{N} \cup \{0\}$, $m, r \in \mathbb{Z}$ and m be a nonzero integer. Then

- $U_{2mn+r} \equiv U_r \pmod{U_m}$ (2.1)
- $V_{2mn+r} \equiv V_r \pmod{U_m}.$ (2.2)

Theorem 3. Let $n \in \mathbb{N} \cup \{0\}$ and $m, r \in \mathbb{Z}$. Then

- $U_{2mn+r} \equiv (-1)^n U_r \pmod{V_m}$ (2.3)
- and

and

 $V_{2mn+r} \equiv (-1)^n V_r \pmod{V_m}.$ (2.4)

The following identities are well known.

$$(2.5) U_{2n} = U_n V_n,$$

(2.6)
$$V_n^2 - (P^2 - 4)U_n^2 = 4,$$

(2.7) $V_{2n} = V_n^2 - 2.$

(2.7)

From Lemma 1 and identity (2.6), we have

(2.8) $5 \mid V_n$ if and only if $5 \mid P$ and n is odd

and (2.9)

7 | V_n if and only if 7 | P and n is odd or $P^2 \equiv 2 \pmod{7}$ and $n \equiv 2 \pmod{4}$.

 $V_{2^r} \equiv \pm 2 \pmod{P}.$

If $r \geq 1$, then by (2.7),

(2.10)

If $r \geq 2$, then by (2.7),

 $V_{2^r} \equiv 2 \pmod{P}.$ (2.11)

It is obvious that

 $5 \mid U_5 \text{ if } P^2 \equiv -1 \pmod{5},$ (2.12)

(2.13)
$$7 \mid U_4 \text{ if } P^2 \equiv 2 \pmod{7}.$$

From now on, unless otherwise stated, we assume that $P \ge 3$ is odd and Q = -1. By using (2.2) together with the fact $8 \mid U_0$, we get

By using (2.2) together with the fact
$$8 \mid U_3$$
, we get

$$(2.14) V_{6q+r} \equiv V_r \pmod{8}$$

Moreover, by using induction, it can be seen that

$$V_{2^r} \equiv 7 \pmod{8}$$

and thus

$$(2.15)\qquad \qquad \left(\frac{2}{V_{2^r}}\right) = 1$$

and

$$(2.16)\qquad \qquad \left(\frac{-1}{V_{2^r}}\right) = -1$$

for $r \geq 1$.

If $r \geq 1$, then

(2.17)
$$\begin{pmatrix} 5\\ \overline{V_{2^r}} \end{pmatrix} = \begin{cases} -1 & \text{if} & 5 \mid P, \\ 1 & \text{if} & P^2 \equiv 1 \pmod{5}, \\ -1 & \text{if} & P^2 \equiv -1 \pmod{5}. \end{cases}$$

,

Moreover,

(2.18)
$$\left(\frac{7}{V_{2^r}}\right) = \pm 1 \text{ if } 7 \mid P \text{ and } r \ge 1,$$

(2.19)
$$\left(\frac{7}{V_{2r}}\right) = -1 \text{ if } 7 \mid P \text{ and } r \ge 2,$$

and

(2.20)
$$\left(\frac{7}{V_{2^r}}\right) = 1 \text{ if } P^2 \equiv 1 \pmod{7} \text{ and } r \ge 1.$$

If $r \ge 2$, then $V_{2^r} \equiv -1 \pmod{\frac{P^2 - 3}{2}}$ and thus (2.21) $\binom{(P^2 - 3)/2}{V_{2^r}} = \binom{P^2 - 3}{V_{2^r}} = 1.$

If $3 \nmid P$, then $V_{2^r} \equiv -1 \pmod{3}$ for $r \geq 1$. Therefore we have

(2.22)
$$\left(\frac{3}{V_{2^r}}\right) = 1.$$

If $3 \mid P$, then $V_{2^r} \equiv -1 \pmod{3}$ for $r \geq 2$ and therefore

(2.23)
$$\left(\frac{3}{V_{2^r}}\right) = 1.$$

Besides, we have

(2.24)
$$\left(\frac{P-1}{V_{2r}}\right) = \left(\frac{P+1}{V_{2r}}\right) = 1$$

3. Main theorems

We assume from this point on that n is a positive integer.

Theorem 4. If $V_n = 5kx^2$ for some integer x, then n = 1.

Proof. Assume that $V_n = 5kx^2$ for some integer x. Then by (2.8), it follows that $5 \mid P$ and n is odd. Let n = 6q + r with $r \in \{1, 3, 5\}$. Then by (2.14), we obtain $V_n = V_{6q+r} \equiv V_r \pmod{8}$. Hence, we have $V_n \equiv V_1, V_3, V_5 \pmod{8}$. This implies that $V_n = 5kx^2 \equiv P, 6P \pmod{8}$ and therefore $kx^2 \equiv 5P, 6P \pmod{8}$. On the other hand, using the fact that $k \mid P$, we may write P = kM with odd M. Thus, we get $kMx^2 \equiv 5PM, 6PM \pmod{8}$, implying that $Px^2 \equiv 5PM, 6PM \pmod{8}$. Since P is odd, then the preceding congruence gives $x^2 \equiv 5M, 6M \pmod{8}$. This shows that $M \equiv 5 \pmod{8}$ since M is odd. Now suppose that n > 1. Then $n = 4q \pm 1 = 2 \cdot 2^r a \pm 1$, $2 \nmid a$ and $r \ge 1$. Substituting this value of n into $V_n = 5kx^2$ and using (2.4) give

$$5kx^2 = V_n = V_{4q\pm 1} = V_{2 \cdot 2^r a \pm 1} \equiv -V_1 \equiv -P \pmod{V_{2^r}}.$$

This shows that

$$5x^2 \equiv -M \pmod{V_{2^r}}$$

since $(k, V_{2^r}) = 1$. According to the above congruence, we have

$$\left(\frac{5}{V_{2^r}}\right) = \left(\frac{-1}{V_{2^r}}\right) \left(\frac{M}{V_{2^r}}\right).$$

By using the facts that $M \equiv 5 \pmod{8}$, $M \mid P$ and identity (2.10), we get

$$\left(\frac{M}{V_{2^r}}\right) = \left(\frac{V_{2^r}}{M}\right) = \left(\frac{\pm 2}{M}\right) = \left(\frac{2}{M}\right) = -1.$$

On the other hand, this is impossible since $\left(\frac{5}{V_{2^r}}\right) = -1$ by (2.17) and $\left(\frac{-1}{V_{2^r}}\right) = -1$ by (2.16). Thus, n = 1, as claimed.

By using Theorem 1, we can give the following corollary.

Corollary 1. The equation $25P^2x^4 - (P^2 - 4)y^2 = 4$ has no integer solutions. **Theorem 5.** Let $k \mid P$ with k > 1. Then there is no integer x such that $V_n = 5kx^2 + 1$.

Proof. Assume that $V_n = 5kx^2 + 1$ for some integer x. Then by Lemma 1, we have n is even. Let n = 2m for some m > 0. Thus, by (2.7), we get $V_n = V_{2m}^2 = V_m^2 - 2 = 5kx^2 + 1$, implying that $V_m^2 \equiv 3 \pmod{5}$, a contradiction. \Box

Corollary 2. The equation $(5Px^2 + 1)^2 - (P^2 - 4)y^2 = 4$ has no integer solutions.

Theorem 6. Let $k \mid P$ with k > 1. Then there is no integer x such that $V_n = 5kx^2 - 1$.

Proof. Assume that $V_n = 5kx^2 - 1$ for some integer x. Then by Lemma 1, n is even. We divide the proof into three cases.

Case 1 : Assume that 5 | *P*. Then by Lemma 1, it follows that $V_n \equiv \pm 2 \pmod{5}$, which contradicts the fact that $V_n \equiv 4 \pmod{5}$.

Case 2 : Assume that $P^2 \equiv -1 \pmod{5}$. Then we immediately have from (2.12) that 5 | U_5 . Let n = 10q + r with $r \in \{0, 2, 4, 6, 8\}$. By (2.2), we get $V_n = V_{10q+r} \equiv V_r \pmod{U_5}$, implying that $V_n \equiv V_0, V_2, V_4, V_6, V_8 \pmod{5}$. This shows that $V_n \equiv 2 \pmod{5}$, which contradicts the fact that $V_n \equiv 4 \pmod{5}$.

Case 3 : Assume that $P^2 \equiv 1 \pmod{5}$. Since n is even, n = 2m for some m > 0. Hence, we get

$$5kx^2 - 1 = V_n = V_{2m} = V_m^2 - 2$$

by (2.7). If m is odd, then $P \mid V_m$ by Lemma 1 and so we get $k \mid 1$, a contradiction. Thus, m is even. Let m = 2u for some u > 0. Then n = 4u and therefore

$$5kx^2 - 1 = V_{4u} \equiv V_0 \equiv 2 \pmod{U_2}$$

by (2.2), which implies that

$$5kx^2 \equiv 3 \pmod{P}.$$

Since $k \mid P$, it follows that $k \mid 3$ and therefore k = 3. So, we conclude that $3 \mid P$. In this case, we have n = 4u and thus by (2.2), we have

$$15x^2 - 1 = V_n = V_{4u} \equiv V_0 \pmod{U_2},$$

implying that

$$15x^2 \equiv 3 \pmod{P}.$$

Since 3 | P, it is seen that $5x^2 \equiv 1 \pmod{P/3}$. This shows that $\left(\frac{5}{P/3}\right) = 1$. We are in the case that $P^2 \equiv 1 \pmod{5}$. So, $P \equiv 1, 4 \pmod{5}$. A simple computation shows that $P/3 \equiv \pm 2 \pmod{5}$. Hence, we have

$$1 = \left(\frac{5}{P/3}\right) = \left(\frac{P/3}{5}\right) = \left(\frac{\pm 2}{5}\right) = -1,$$

a contradiction.

Corollary 3. The equation $(5Px^2 - 1)^2 - (P^2 - 4)y^2 = 4$ has no integer solutions.

Theorem 7. If $V_n = 5x^2 + 1$, then n = 1 and $V_1 = 5x^2 + 1$ where x is even.

Proof. Assume that $V_n = 5x^2 + 1$ for some integer x. If n is even, then n = 2m and therefore $V_n = V_{2m} = V_m^2 - 2$ by (2.7). This implies that $V_m^2 \equiv 3 \pmod{5}$, a contradiction. Thus, n is odd.

Case 1 : Assume that $5 \mid P$. Since *n* is odd, it follows from Lemma 1 that $5 \mid V_n$, implying that $5 \mid 1$, a contradiction.

Case 2 : Assume that $P^2 \equiv 1 \pmod{5}$. If n > 1, then $n = 4q \pm 1 = 2 \cdot 2^r a \pm 1$, $2 \nmid a$ and $r \ge 1$. Thus,

$$5x^2 = V_n - 1 \equiv -V_1 - 1 \equiv -(P+1) \pmod{V_{2^r}}$$

by (2.4). By using (2.16), (2.17), and (2.24), it is seen that

$$1 = \left(\frac{-1}{V_{2r}}\right) \left(\frac{5}{V_{2r}}\right) \left(\frac{P+1}{V_{2r}}\right) = -1,$$

a contradiction. So, n = 1. This implies that $P = 5x^2 + 1$ with x even.

Case 3 : Assume that $P^2 \equiv -1 \pmod{5}$. If $P \equiv 1 \pmod{4}$, since n is odd, we can write $n = 4q \pm 1$. Thus, $5x^2 + 1 = V_n \equiv V_1 \equiv P \pmod{U_2}$ by (2.2). This implies that

$$(3.1) 5x^2 \equiv -1 \pmod{P}$$

Since $P^2 \equiv -1 \pmod{5}$, it follows that $P \equiv \pm 2 \pmod{5}$. Hence, we have

$$\left(\frac{5}{P}\right) = \left(\frac{P}{5}\right) = \left(\frac{\pm 2}{5}\right) = -1.$$

On the other hand, using the fact that $P \equiv 1 \pmod{4}$, we get

$$\left(\frac{-1}{P}\right) = (-1)^{\frac{P-1}{2}} = 1.$$

And so, (3.1) is impossible. Now if $P \equiv 3 \pmod{4}$, let n = 6q + r with $r \in \{1, 3, 5\}$. Hence, by (2.14), we have

$$5x^2 + 1 = V_n = V_{6q+r} \equiv V_r \equiv V_1, V_3, V_5 \pmod{8},$$

implying that

$$5x^2 + 1 \equiv P, 6P \pmod{8}.$$

If x is even, then $P, 6P \equiv 1 \pmod{4}$, which is impossible since $P \equiv 3 \pmod{4}$. If x is odd, then $P, 6P \equiv 6 \pmod{8}$, which is impossible since $P \equiv 3, 7 \pmod{8}$. This completes the proof.

Corollary 4. The equation $(5x^2 + 1)^2 - (P^2 - 4)y^2 = 4$ has integer solutions only when $P = 5x^2 + 1$ with x even.

Theorem 8. If $V_n = 5x^2 - 1$, then n = 1 and $V_1 = 5x^2 - 1$ with x is even, or n = 2 and $P = L_{3z}/2$ and $x = F_{3z}/2$ where z is even.

Proof. Assume that $V_n = 5x^2 - 1$ for some integer x. Dividing the proof into three cases, we have

Case 1 : Assume that 5 | P. Lemma 1 implies that $V_n \equiv 0, \pm 2 \pmod{5}$, which contradicts $V_n = 5x^2 - 1$.

Case 2 : Assume that $P^2 \equiv 1 \pmod{5}$. If n > 1 is odd, then $n = 4q \pm 1 = 2 \cdot 2^r a \pm 1, 2 \nmid a$ and $r \ge 1$. Thus,

$$5x^2 - 1 = V_n \equiv -V_1 \equiv -P \pmod{V_{2^r}},$$

implying that

$$5x^2 \equiv -(P-1) \pmod{V_{2^r}}.$$

By using (2.16), (2.17), and (2.24), it is seen that

$$1 = \left(\frac{-1}{V_{2^r}}\right) \left(\frac{5}{V_{2^r}}\right) \left(\frac{P-1}{V_{2^r}}\right) = -1,$$

which is impossible. So n = 1 and $P = 5x^2 - 1$ with x even. Now if n is even, then n = 2m for some m > 0. If m > 1 is odd, then $n = 2(4q \pm 1) = 2 \cdot 2^r a \pm 2$, $2 \nmid a$ and $r \geq 2$. Thus,

$$5x^2 - 1 = V_n \equiv -V_2 \equiv -(P^2 - 2) \pmod{V_{2^r}}$$

implying that

$$5x^2 \equiv -(P^2 - 3) \pmod{V_{2^r}}.$$

By using (2.16), (2.17), and (2.21), it is seen that

$$1 = \left(\frac{-1}{V_{2^r}}\right) \left(\frac{5}{V_{2^r}}\right) \left(\frac{P^2 - 3}{V_{2^r}}\right) = -1,$$

a contradiction. Hence, we have m = 1 and therefore n = 2. Substituting this value of n into $V_n = 5x^2 - 1$ gives $V_2 = P^2 - 2 = 5x^2 - 1$, i.e., $P^2 - 5x^2 = 1$. By Lemma 2, we get $P = L_{3z}/2$ and $x = F_{3z}/2$ with z even natural number. If m is even, then m = 2u for some u > 0 and therefore $n = 4u = 2 \cdot 2^r a$, $2 \nmid a$ and $r \geq 1$. Thus, by (2.4)

$$5x^2 - 1 = V_n = V_{4u} \equiv -V_0 \equiv -2 \pmod{V_{2^r}},$$

implying that

$$5x^2 \equiv -1 \pmod{V_{2^r}}.$$

But this is impossible since $\left(\frac{5}{V_{2^r}}\right) = 1$ by (2.17) and $\left(\frac{-1}{V_{2^r}}\right) = -1$ by (2.16). Case 3 : Assume that $P^2 \equiv -1 \pmod{5}$. So, $P \equiv \pm 2 \pmod{5}$. If n is odd,

Case 3 : Assume that $P^2 \equiv -1 \pmod{5}$. So, $P \equiv \pm 2 \pmod{5}$. If *n* is odd, then we can write $n = 4q \pm 1$. Thus, $5x^2 - 1 = V_n \equiv V_1 \pmod{U_2}$ by (2.2). This implies that $5x^2 \equiv 1 \pmod{P}$. But this is impossible since

$$1 = \left(\frac{5}{P}\right) = \left(\frac{P}{5}\right) = \left(\frac{\pm 2}{5}\right) = -1.$$

If $n \equiv 2 \pmod{4}$, where $n \geq 6$, then $n = 2(4q) \pm 2$. This shows that $5x^2 - 1 = V_n \equiv V_2 \pmod{V_2}$ by (2.4), implying that $5x^2 \equiv 1 \pmod{P^2 - 2}$. But this is impossible since

$$1 = \left(\frac{5}{P^2 - 2}\right) = \left(\frac{P^2 - 2}{5}\right) = \left(\frac{-3}{5}\right) = -1.$$

And so n = 2. Substituting this value of n into $V_n = 5x^2 - 1$ gives $P^2 - 2 = 5x^2 - 1$, implying that $P^2 \equiv 1 \pmod{5}$, which is impossible since $P^2 \equiv -1 \pmod{5}$. Now if $n \equiv 0 \pmod{4}$, then n = 4u for some u. By (2.7), we have $5x^2 - 1 = V_n = V_{4u} = V_{2u}^2 - 2$, which implies that $V_{2u}^2 - 1 = 5x^2$. That is,

 $(V_{2u} - 1)(V_{2u} + 1) = 5x^2$. Clearly, $d = (V_{2u} - 1, V_{2u} + 1) = 1$ or 2. If d = 1, then either

 $(3.2) V_{2u} - 1 = a^2, V_{2u} + 1 = 5b^2$

or

(3.3)
$$V_{2u} - 1 = 5a^2, V_{2u} + 1 = b^2$$

for some integers a and b. It can be easily seen that (3.2) and (3.3) are impossible. If d = 2, then either

(3.4) $V_{2u} - 1 = 2a^2, V_{2u} + 1 = 10b^2$

or

(3.5)
$$V_{2u} - 1 = 10a^2, V_{2u} + 1 = 2b^2$$

for some integers a and b. Obviously, by (2.7), we get (3.5) is impossible since $V_u^2 \equiv 3 \pmod{5}$ in this case. Suppose (3.4) is satisfied. Then by (2.7), we have (3.6) $V_u^2 - 3 = 2a^2$.

If $3 \nmid a$, then $a^2 \equiv 1 \pmod{3}$ and therefore we get $V_u^2 \equiv 2 \pmod{3}$, which is impossible. Hence, we have $3 \mid a$. This implies that $3 \mid V_u$. For the case when $3 \mid a$ and $3 \mid V_u$, we easily see from (3.6) that $9 \mid 3$, a contradiction. This completes the proof.

Corollary 5. The equation $(5x^2 - 1)^2 - (P^2 - 4)y^2 = 4$ has integer solutions only when $P = 5x^2 - 1$ with x even or $P = L_{3z}/2$ with z even.

Theorem 9. If $V_n = 7kx^2$ with $k \mid P$ and k > 1, then n = 1.

Proof. Suppose that $V_n = 7kx^2$ for some integer x. Then by Lemma 1, we see that n is odd. And since $7 | V_n$ and n is odd, it follows from (2.9) that 7 | P. Then by (2.14), we have $V_n \equiv V_1, V_3, V_5 \equiv P, 6P \pmod{8}$. This implies that $7kx^2 \equiv P, 6P \pmod{8}$, i.e., $kx^2 \equiv 2P, 7P \pmod{8}$. Since k | P, we may write P = kM with odd M. Thus, we get $kMx^2 \equiv 2PM, 7PM \pmod{8}$. And so $x^2 \equiv 2M, 7M \pmod{8}$. This shows that $M \equiv 7 \pmod{8}$ since M is odd. Now suppose n > 1. Then $n = 4q \pm 1 = 2 \cdot 2^r a \pm 1, 2 \nmid a$ and $r \ge 1$. Substituting this value of n into $V_n = 7kx^2$ and using (2.4) give

$$7kx^2 = V_n \equiv -V_1 \equiv -P \pmod{V_{2^r}}.$$

This shows that

$$7x^2 \equiv -M \pmod{V_{2^r}}$$

since $(k, V_{2^r}) = 1$. Thus, we have

$$1 = \left(\frac{7}{V_{2^r}}\right) \left(\frac{-1}{V_{2^r}}\right) \left(\frac{M}{V_{2^r}}\right).$$

If $r \ge 2$, then by (2.16), it is seen that $\left(\frac{-1}{V_{2r}}\right) = -1$. On the other hand, $\left(\frac{7}{V_{2r}}\right) = -1$ by (2.19). Besides, using M|P and identity (2.11), we get $\left(\frac{M}{V_{2r}}\right) =$

 $(-1)\left(\frac{2}{M}\right) = -1$. This means that 1 = -1, a contradiction. Thus, r = 1. But in this case, since $\left(\frac{-1}{V_{2r}}\right) = -1$ by (2.16), $\left(\frac{7}{V_{2r}}\right) = 1$ by (2.18), and $\left(\frac{M}{V_{2r}}\right) = 1$ by (2.10), we again get a contradiction. So, we conclude that n = 1.

Corollary 6. The equation $49P^2x^4 - (P^2 - 4)y^2 = 4$ has no integer solutions. **Theorem 10.** Let $k \mid P$ with k > 1. Then the equation $V_n = 7kx^2 + 1$ has no integer solutions.

Proof. Suppose that $V_n = 7kx^2 + 1$ for some integer x. Then by Lemma 1, we have n is even and therefore n = 2m for some m > 0. By (2.7), we get $V_n = V_{2m}^2 = V_m^2 - 2 = 7kx^2 + 1$, implying that $V_m^2 \equiv 3 \pmod{7}$, a contradiction. \Box

Corollary 7. The equation $(7Px^2 + 1)^2 - (P^2 - 4)y^2 = 4$ has no integer solutions.

Theorem 11. Let $k \mid P$ with k > 1. Then the equation $V_n = 7kx^2 - 1$ has no integer solutions.

Proof. Suppose that $V_n = 7kx^2 - 1$ for some integer x. Then by Lemma 1, it is seen that n is even. Dividing the proof into four cases, we have,

Case 1 : Assume that 7 | *P*. Then by Lemma 1, it follows that $V_n \equiv \pm 2 \pmod{7}$, which contradicts the fact that $V_n \equiv 6 \pmod{7}$.

Case 2 : Assume that $P^2 \equiv 2 \pmod{7}$. Then it is easily seen from (2.13) that 7 | U_4 . Since n is even, n = 8q + r with $r \in \{0, 2, 4, 6\}$, so by (2.2), $V_n \equiv V_0, V_2, V_4, V_6 \pmod{U_4}$, implying that $V_n \equiv 0, 2 \pmod{7}$, which is impossible.

Case 3 : Assume that $P^2 \equiv 4 \pmod{7}$. Then $P \equiv 2, 5 \pmod{7}$. On the other hand, it can be easily seen that $V_n \equiv 2, 5 \pmod{7}$ in this case. But this contradicts the fact that $V_n \equiv 6 \pmod{7}$.

Case 4 : Assume that $P^2 \equiv 1 \pmod{7}$. Since n = 2m, we get $V_n = V_{2m} = V_m^2 - 2 = 7kx^2 - 1$, i.e., $V_m^2 = 7kx^2 + 1$. If *m* is odd, then $P \mid V_m$ by Lemma 1 and therefore we obtain $k \mid 1$, a contradiction. Thus, *m* is even. Let m = 2u for some u > 0. Then n = 4u and therefore by (2.2), we have

$$7kx^2 - 1 = V_{4u} \equiv V_0 \equiv 2 \pmod{U_2},$$

which implies that

$$7kx^2 \equiv 3 \pmod{P}.$$

Since $k \mid P$, it follows that $k \mid 3$ and this means that k = 3. Hence, we find that $3 \mid P$. In this case, we have $n = 4u = 2 \cdot 2^r a$, $2 \nmid a$ and $r \ge 1$. And thus,

$$21x^2 - 1 = V_n \equiv -V_0 \equiv -2 \pmod{V_{2^r}}.$$

This shows that

$$\left(\frac{3}{V_{2^r}}\right)\left(\frac{7}{V_{2^r}}\right) = \left(\frac{-1}{V_{2^r}}\right).$$

If $r \ge 2$, then $\left(\frac{3}{V_{2r}}\right) = 1$ by (2.23) and $\left(\frac{7}{V_{2r}}\right) = 1$ by (2.20). But since $\left(\frac{-1}{V_{2r}}\right) = -1$ by (2.16), we get a contradiction. So, r = 1. This means that

n = 4u with u odd. By (2.7), we have $21x^2 - 1 = V_n = V_{4u} = V_{2u}^2 - 2$, which implies that $V_{2u}^2 - 1 = 21x^2$. That is, $(V_{2u} - 1)(V_{2u} + 1) = 21x^2$. Clearly, $d = (V_{2u} - 1, V_{2u} + 1) = 1$ or 2. If d = 1, then either

$V_{2u} - 1 = a^2, \ V_{2u} + 1 = 21b^2,$
$V_{2u} - 1 = 3a^2, \ V_{2u} + 1 = 7b^2,$
$V_{2u} - 1 = 7a^2, V_{2u} + 1 = 3b^2,$

or

 $V_{2u} - 1 = 21a^2, V_{2u} + 1 = b^2.$

A simple computation shows that all the above equalities are impossible. Now if d = 2, then

(3.7) $V_{2u} - 1 = 2a^2, V_{2u} + 1 = 42b^2,$

(3.8)
$$V_{2u} - 1 = 6a^2, V_{2u} + 1 = 14b^2,$$

(3.9)
$$V_{2u} - 1 = 14a^2, V_{2u} + 1 = 6b^2,$$

or

(3.10)
$$V_{2u} - 1 = 42a^2, V_{2u} + 1 = 2b^2.$$

If we combine the two equations in (3.7), we get $a^2 \equiv 6 \pmod{7}$, a contradiction. By using (2.7), we see that (3.9) and (3.10) are impossible since $V_u^2 \equiv 3 \pmod{7}$ in both cases. Now assume that (3.8) is satisfied. Let u > 1, and so $2u = 2 \cdot 2^r a \pm 2$, $2 \nmid a$ and $r \ge 2$. Thus, we obtain by (2.4) that

$$14b^2 - 1 = V_{2u} = V_{2 \cdot 2^r a \pm 2} \equiv -V_2 \equiv -(P^2 - 2) \pmod{V_{2^r}},$$

implying that

$$7b^{2} \equiv -(P^{2} - 3)/2 \pmod{V_{2r}}.$$

But this is impossible since $\left(\frac{7}{V_{2r}}\right) = 1$ by (2.20), $\left(\frac{-1}{V_{2r}}\right) = -1$ by (2.16), and $\left(\frac{(P^{2} - 3)/2}{V_{2r}}\right) = 1$ by (2.21). As a consequence, we get $u = 1$ and therefore $n = 4$.
Substituting $n = 4$ into $V_{n} = 21x^{2} - 1$ gives $V_{4} = (P^{2} - 2)^{2} - 2 = 21x^{2} - 1$,
i.e., $(P^{2} - 2)^{2} - 21x^{2} = 1$. Since all positive integer solutions of the equation
 $u^{2} - 21v^{2} = 1$ are given by $(u, v) = (V_{s}(110, -1)/2, 12U_{s}(110, -1))$ with $s \ge 1$,
we get $P^{2} - 2 = V_{s}(110, -1)/2$ for some $s \ge 0$. Thus, $V_{s}(110, -1) = 2P^{2} - 4$. It
can be shown that s is odd. Taking $s = 4q \pm 1$ and using this into $V_{s}(110, -1)/2$
give
 $2P^{2} - 4 = V_{s} \equiv V_{1} \pmod{V_{1}},$

implying that

$$2P^2 \equiv 4 \pmod{5}.$$

Hence, we readily obtain that $P^2 \equiv 2 \pmod{5}$, which is impossible. This completes the proof.

Corollary 8. The equation $(7Px^2 - 1)^2 - (P^2 - 4)y^2 = 4$ has no integer solutions.

Theorem 12. If $V_n = 7x^2 + 1$, then n = 1 and $V_1 = 7x^2 + 1$ where x is even.

Proof. Suppose that $V_n = 7x^2 + 1$ for some integer x. If n is even, then n = 2m and therefore $V_n = V_{2m} = V_m^2 - 2$ by (2.7). This implies that $V_m^2 \equiv 3 \pmod{7}$, which is impossible. Thus, n is odd. Dividing the remainder of the proof into four cases, we have

Case 1 : Assume that $7 \mid P$. Since *n* is odd, it follows from Lemma 1 that $7 \mid V_n$, implying that $7 \mid 1$, a contradiction.

Case 2 : Assume that $P^2 \equiv 1 \pmod{7}$. If n > 1, then $n = 4q \pm 1 = 2 \cdot 2^r a \pm 1$, $2 \nmid a$ and $r \ge 1$. Thus,

$$7x^2 = V_n - 1 \equiv -V_1 - 1 \equiv -(P+1) \pmod{V_{2^r}}$$

by (2.4). By using (2.20), (2.16), and (2.24), it is seen that

$$1 = \left(\frac{7}{V_{2^r}}\right) \left(\frac{-1}{V_{2^r}}\right) \left(\frac{P+1}{V_{2^r}}\right) = -1,$$

a contradiction. So, n = 1. This implies that $P = 7x^2 + 1$ with x even.

Case 3 : Assume that $P^2 \equiv 2 \pmod{7}$. Hence, $P \equiv 3, 4 \pmod{7}$. Moreover, it can be easily seen that $7 \mid V_2$. Since $n = 4q \pm 1$, it follows from (2.4) that $V_n = V_{4q\pm 1} \equiv \pm V_1 \pmod{V_2}$, implying that $V_n \equiv 3, 4 \pmod{7}$, which is impossible.

Case 4 : Assume that $P^2 \equiv 4 \pmod{7}$. Hence, $P \equiv 2, 5 \pmod{7}$. In this case, it can be easily shown by induction that

$$V_n \equiv \begin{cases} 2 \pmod{7} & \text{if } n \text{ is even,} \\ P \pmod{7} & \text{if } n \text{ is odd.} \end{cases}$$

This implies that $V_n \equiv 2,5 \pmod{7}$, which is impossible. This completes the proof.

Corollary 9. The equation $(7x^2 + 1)^2 - (P^2 - 4)y^2 = 4$ has integer solutions only when $P = 7x^2 + 1$ with even x.

Theorem 13. If $V_n = 7x^2 - 1$, then n = 1 and $V_1 = 7x^2 - 1$ with x is even, or n = 2 and $P = V_k(16, -1)/2$ and $x = 3U_k(16, -1)$ where k is even.

Proof. Suppose that $V_n = 7x^2 - 1$ for some x > 0.

Case 1 : Assume that 7 | P. Then by Lemma 1, $V_n \equiv 0, \pm 2 \pmod{7}$, and so $V_n \neq 7x^2 - 1$.

Case 2 : Assume that $P^2 \equiv 1 \pmod{7}$. If n is odd, then we can write $n = 4q \pm 1 = 2 \cdot 2^r a \pm 1, 2 \nmid a$ and $r \ge 1$. Hence, we get

$$7x^2 - 1 = V_n \equiv -V_1 \equiv -P \pmod{V_{2^r}},$$

implying that

$$7x^2 \equiv -(P-1) \pmod{V_{2^r}}.$$

By using (2.20), (2.16), and (2.24), we immediately have

$$1 = \left(\frac{7}{V_{2^r}}\right) \left(\frac{-1}{V_{2^r}}\right) \left(\frac{P-1}{V_{2^r}}\right) = -1$$

which is impossible. If $n \equiv 0 \pmod{4}$, then n = 4u for some u. Hence, we get

$$7x^2 - 1 = V_n \equiv -V_0 \equiv -2 \pmod{V_{2^r}},$$

implying that

$$7x^2 \equiv -1 \pmod{V_{2^r}}.$$

But this is impossible since $\left(\frac{7}{V_{2r}}\right) = 1$ by (2.20) and $\left(\frac{-1}{V_{2r}}\right) = -1$ by (2.16). If $n \equiv 2 \pmod{4}$ with $n \ge 6$, then $n = 2(4q \pm 1) = 2 \cdot 2^r a \pm 2$, $2 \nmid a$ and $r \ge 2$. Hence, we have

$$7x^2 - 1 = V_n \equiv -V_2 \equiv -(P^2 - 2) \pmod{V_{2^r}},$$

implying that

$$7x^2 \equiv -(P^2 - 3) \pmod{V_{2^r}}.$$

By using (2.20), (2.16), and (2.21), we readily obtain

$$1 = \left(\frac{7}{V_{2^r}}\right) \left(\frac{-1}{V_{2^r}}\right) \left(\frac{P^2 - 3}{V_{2^r}}\right) = -1,$$

a contradiction. So n = 2, and $V_n = 7x^2 - 1$ gives $V_2 = P^2 - 2 = 7x^2 - 1$, i.e., $P^2 - 7x^2 = 1$. Since all positive integer solutions of the equation $u^2 - 7v^2 = 1$ are given by $(u, v) = (V_k(16, -1)/2, 3U_k(16, -1))$ with $k \ge 1$, it follows that $P = V_k(16, -1)/2$ for positive even k, since P is odd.

Case 3 : Assume that $P^2 \equiv 2 \pmod{7}$. And so 7 | V_2 , and if we write n = 4q + r with $r \in \{0, 1, 2, 3\}$, then

$$V_n = V_{2 \cdot 2q \pm r} \equiv \pm V_r \equiv \pm \{V_0, V_1, V_2, V_3\} \pmod{V_2},$$

i.e.,

$$V_n \equiv 0, 2, 3, 4, 5 \pmod{7},$$

which is impossible.

Case 4 : Assume that $P^2 \equiv 4 \pmod{7}$. So, $P \equiv 2, 5 \pmod{7}$. Using the fact that

$$V_n \equiv \begin{cases} 2 \pmod{7} \text{ if } n \text{ is even} \\ P \pmod{7} \text{ if } n \text{ is odd} \end{cases}$$

gives $V_n \equiv 2,5 \pmod{7}$, which is impossible. This completes the proof.

Corollary 10. The equation $(7x^2 - 1)^2 - (P^2 - 4)y^2 = 4$ has integer solutions only when $P = 7x^2 - 1$ with x even or $P = V_k(16, -1)/2$ with k even.

Acknowledgement. The authors would like to thank the anonymous referee for careful reading and suggestions that improved the clarity of this manuscript.

References

- [1] J. H. E. Cohn, Squares in some recurrent sequences, Pacific J. Math. 41 (1972), 631-646.
- [2] B. Demirtürk and R. Keskin, Integer solutions of some Diophantine equations via Fibonacci and Lucas numbers, J. Integer Seq. 12 (2009), no. 8, Article 09.8.7, 14 pp.
- [3] D. Kalman and R. Mena, *The Fibonacci numbers-exposed*, Math. Mag. **76** (2003), no. 3, 167–181.
- [4] R. Keskin, Generalized Fibonacci and Lucas numbers of the form wx^2 and $wx^2 \pm 1$, Bull. Korean Math. Soc. **51** (2014), no. 4, 1041–1054.
- [5] R. Keskin and O. Karaath, Generalized Fibonacci and Lucas numbers of the form 5x², Int. J. Number Theory 11 (2015), no. 3, 931–944.
- [6] W. L. McDaniel, Diophantine Representation of Lucas Sequences, Fibonacci Quart. 33 (1995), no. 1, 59–63.
- [7] R. Melham, Conics which characterize certain Lucas sequences, Fibonacci Quart. 35 (1997), no. 3, 248–251.
- [8] J. B. Muskat, Generalized Fibonacci and Lucas sequences and rootfinding methods, Math. Comp. 61 (1993), no. 203, 365–372.
- [9] S. Rabinowitz, Algorithmic manipulation of Fibonacci identities, Appl. Fibonacci Numbers 6 (1996), 389–408.
- [10] P. Ribenboim, My Numbers, My Friends, Springer-Verlag New York, Inc., 2000.
- [11] P. Ribenboim and W. L. McDaniel, The square terms in Lucas sequences, J. Number Theory 58 (1996), no. 1, 104–123.
- [12] _____, On Lucas sequence terms of the form kx², Number Theory: Proceedings of the Turku symposium on Number Theory in memory of Kustaa Inkeri (Turku, 1999), 293–303, Walter de Gruyter, Berlin, 2001.
- [13] Z. Şiar and R. Keskin, Some new identities concerning generalized Fibonacci and Lucas numbers, Hacet. J. Math. Stat. 42 (2013), no. 3, 211–222.
- [14] _____, The square terms in generalized Fibonacci sequence, Mathematika **60** (2014), no. 1, 85–100.

Olcay Karaatli Sakarya University Faculty of Arts and Science TR54187 Sakarya, Turkey *E-mail address:* okaraatli@sakarya.edu.tr

REFIK KESKIN SAKARYA UNIVERSITY FACULTY OF ARTS AND SCIENCE TR54187 SAKARYA, TURKEY *E-mail address*: rkeskin@sakarya.edu.tr