A COMPLETE FORMULA FOR THE ORDER OF APPEARANCE OF THE POWERS OF LUCAS NUMBERS

Prapanpong Pongsriam

Abstract

Let F_{n} and L_{n} be the nth Fibonacci number and Lucas number, respectively. The order of appearance of m in the Fibonacci sequence, denoted by $z(m)$, is the smallest positive integer k such that m divides F_{k}. Marques obtained the formula of $z\left(L_{n}^{k}\right)$ in some cases. In this article, we obtain the formula of $z\left(L_{n}^{k}\right)$ for all $n, k \geq 1$.

1. Introduction

Let $\left(F_{n}\right)_{n \geq 1}$ and $\left(L_{n}\right)_{n \geq 1}$ be, respectively, the Fibonacci sequence and Lucas sequence given by $F_{1}=F_{2}=1, F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3, L_{1}=1, L_{2}=3$, and $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 3$. For a positive integer m, the order of appearance of m in the Fibonacci sequence, denoted by $z(m)$, is the smallest positive integer k such that m divides F_{k}. Recently, Marques [5] has obtained the formula of $z\left(L_{n}^{k}\right)$ in some cases as follows.

Theorem 1.1 (Marques [5, Theorem 1.2]). We have
(i) if $k \geq 1$ and $n \equiv 3(\bmod 6)$, then $z\left(L_{n}^{k+1}\right)=n L_{n}^{k}$,
(ii) if $n \equiv 6(\bmod 12)$, then $z\left(L_{n}^{2}\right)=n L_{n}, z\left(L_{n}^{3}\right)=n L_{n}^{2} / 2$, and $z\left(L_{n}^{k+1}\right)=$ $n L_{n}^{k} / 4$ for $k \geq 4$,
(iii) if $n \equiv 0(\bmod 12)$ and $k \geq v_{2}(n)+2$, then $z\left(L_{n}^{k+1}\right)=\frac{n L_{n}^{k}}{2^{v_{2}(n)+1}}$.

Notice that Theorem 1.1 does not include a formula for $z\left(L_{n}^{k+1}\right)$ when $n=$ $12 \cdot 2^{\ell}$ and $k \leq \ell+3$ and does not give a formula for $z\left(L_{n}^{k}\right)$ when $n \equiv 1,2$ $(\bmod 3)$. The purpose of this article is to give a formula for $z\left(L_{n}^{k}\right)$ in all cases. Our result is as follows.

Theorem 1.2. Let $n \geq 2$. Then the following statements hold.
(i) $z\left(L_{n}\right)=2 n$.
(ii) If $k \geq 2$ and $n \equiv 1,2(\bmod 3)$, then $z\left(L_{n}^{k}\right)=2 n L_{n}^{k-1}$.
(iii) If $k \geq 2$ and $n \equiv 3(\bmod 6)$, then $z\left(L_{n}^{k}\right)=n L_{n}^{k-1}$.

Received September 6, 2015; Revised December 3, 2015.
2010 Mathematics Subject Classification. Primary 11B39.
Key words and phrases. Fibonacci number, Lucas number, the order of appearance, the rank of appearance.
(iv) If $k \geq 2$ and $n \equiv 0(\bmod 6)$, then

$$
z\left(L_{n}^{k}\right)= \begin{cases}\frac{n L_{n}^{k-1}}{2^{v_{2}(n)+1}}, & \text { if } k \geq v_{2}(n)+3 \\ \frac{n L_{n}^{k-1}}{2^{k-2}}, & \text { if } k<v_{2}(n)+3\end{cases}
$$

Note that Theorem 1.2(i) is already given in [6, Proposition 4.1] and Theorem 1.2(iii) is the same as Theorem 1.1(i) but we include them here for completeness. Theorem 1.2(iv) extends (ii) and (iii) of Theorem 1.1. Finally, Theorem 1.2(ii) is new.

2. Auxiliary results

We first recall some results which will be used in the proof of main theorems.
Lemma 2.1. We have
(i) if $n \geq 2$, then $L_{n} \mid F_{m}$ if and only if $2 n \mid m$,
(ii) $n \mid F_{m}$ if and only if $z(n) \mid m$,
(iii) $5 \nmid L_{n}$ for any n.

Proof. These are well-known results but we will give some references for the reader's convenience. The statement (i) can be found, for example, in [3, Theorem 16.5, p. 200], and (ii) is given by Halton in [2, Lemma 8, p. 222]. Note that Halton [2] used $\alpha(n)$ instead of $z(n)$ to denote the order of appearance of n and called it by the old name: the rank of apparition. Here we follow the notation used by Marques [5], and Fibonacci Association (see [1, Tables of Fibonacci Entry Points]). Next the identity $5 F_{n}^{2}-L_{n}^{2}=4(-1)^{n+1}$ can be proved by induction, or by using Binet's formula, and can also be found in [8, p. 177]. Then (iii) follows immediately from this identity.

Lemma 2.2 (Lengyel [4]). For each $n \geq 1$, let $v_{p}(n)$ be the p-adic order of n. Then

$$
\begin{aligned}
& v_{2}\left(F_{n}\right)= \begin{cases}0, & \text { if } n \equiv 1,2 \quad(\bmod 3) ; \\
1, & \text { if } n \equiv 3 \quad(\bmod 6) ; \\
v_{2}(n)+2, & \text { if } n \equiv 0 \quad(\bmod 6)\end{cases} \\
& v_{2}\left(L_{n}\right)= \begin{cases}0, & \text { if } n \equiv 1,2 \quad(\bmod 3) ; \\
2, & \text { if } n \equiv 3 \quad(\bmod 6) ; \\
1, & \text { if } n \equiv 0 \quad(\bmod 6),\end{cases}
\end{aligned}
$$

$v_{5}\left(F_{n}\right)=v_{5}(n), v_{5}\left(L_{n}\right)=0$, and if p is a prime, $p \neq 2$, and $p \neq 5$, then
$v_{p}\left(F_{n}\right)= \begin{cases}v_{p}(n)+v_{p}\left(F_{z(p)}\right), & \text { if } n \equiv 0 \quad(\bmod z(p)) ; \\ 0, & \text { if } n \not \equiv 0 \quad(\bmod z(p)),\end{cases}$
$v_{p}\left(L_{n}\right)= \begin{cases}v_{p}(n)+v_{p}\left(F_{z(p)}\right), & \text { if } z(p) \text { is even and } n \equiv \frac{z(p)}{2} \quad(\bmod z(p)) ; \\ 0, & \text { otherwise. }\end{cases}$

Lemma 2.3 (Pongsriiam [7, Theorem 4]). Assume that k, m, n are positive integers, m is even, and $n \geq 2$. If $L_{n}^{k} \mid m$, then $L_{n}^{k+1} \mid F_{n m}$.

3. Main results

Theorem 3.1. Let $n, k \geq 2$. Then $z\left(L_{n}^{k}\right)=\frac{2 n L_{n}^{k-1}}{j}$ where j satisfies the following conditions:
(i) $j \mid L_{n}^{k-1}$.
(ii) $j=2^{a}$ for some $a \geq 0$.
(iii) j is the largest integer such that $v_{2}\left(L_{n}^{k}\right) \leq v_{2}\left(F_{\frac{2 n L_{n}^{k-1}}{j}}\right)$.

Proof. Since $L_{n}^{k-1} \mid 2 L_{n}^{k-1}$, we obtain by Lemma 2.3 that $L_{n}^{k} \mid F_{2 n L_{n}^{k-1}}$. By Lemma 2.1(ii), $z\left(L_{n}^{k}\right) \mid 2 n L_{n}^{k-1}$ and therefore

$$
\begin{equation*}
2 n L_{n}^{k-1}=z\left(L_{n}^{k}\right) j \quad \text { for some } j \geq 1 \tag{1}
\end{equation*}
$$

By the definition of $z\left(L_{n}^{k}\right)$, we obtain $L_{n}\left|L_{n}^{k}\right| F_{z\left(L_{n}^{k}\right)}$. Then by Lemma 2.1(i), we have

$$
\begin{equation*}
2 n \mid z\left(L_{n}^{k}\right) \tag{2}
\end{equation*}
$$

From (1) and (2), we see that $z\left(L_{n}^{k}\right)=\frac{2 n L_{n}^{k-1}}{j}$ and $j \mid L_{n}^{k-1}$. This proves (i). In addition, by the definition of $z\left(L_{n}^{k}\right)$ and Lemma 2.1(ii),
(3) $\quad j$ is the largest positive integer such that $L_{n}^{k} \left\lvert\, F_{\frac{2 n L_{n}^{k-1}}{j}}\right.$.

Next let p be an odd prime dividing L_{n}. Then $v_{p}\left(L_{n}\right)>0$. By Lemma 2.1(iii) (or by Lemma 2.2), we see that $p \neq 5$. By Lemma 2.2, we obtain $2 n \equiv 0$ $(\bmod z(p))$, so $\frac{2 n L_{n}^{k-1}}{j} \equiv 0(\bmod z(p))$ and therefore

$$
\begin{align*}
v_{p}\left(F_{\frac{2 n L_{n}^{k-1}}{j}}\right) & =v_{p}(n)+(k-1) v_{p}\left(L_{n}\right)-v_{p}(j)+v_{p}\left(F_{z(p)}\right) \\
& =v_{p}\left(L_{n}\right)+(k-1) v_{p}\left(L_{n}\right)-v_{p}(j) \\
& =v_{p}\left(L_{n}^{k}\right)-v_{p}(j) . \tag{4}
\end{align*}
$$

Then (3) and (4) imply that $v_{p}(j)=0$ for every odd prime p. This proves (ii). We also see that (3) and (4) imply (iii). This completes the proof.

Next we give a proof of Theorem 1.2.
Proof of Theorem 1.2. By Lemma 2.1(i), the smallest k such that $L_{n} \mid F_{k}$ is $k=2 n$. So $z\left(L_{n}\right)=2 n$. Next we will use Theorem 3.1 to prove (ii), (iii), and (iv) of Theorem 1.2. So assume that j is the integer given in Theorem 3.1.

Case 1: $k \geq 2$ and $n \equiv 1,2(\bmod 3)$. Then $2 \nmid L_{n}^{k-1}$. Since $j \mid L_{n}^{k-1}$ and $j=2^{a}$ for some $a \geq 0$, we obtain that $j=1$. So $z\left(L_{n}^{k}\right)=2 n L_{n}^{k-1}$.

Case 2: $k \geq 2$ and $n \equiv 3(\bmod 6)$. Then by Lemma 2.2 ,

$$
v_{2}\left(F_{\frac{2 n L_{n}^{k-1}}{j}}\right)=v_{2}\left(\frac{2 n L_{n}^{k-1}}{j}\right)+2=1+v_{2}(n)+(k-1) v_{2}\left(L_{n}\right)-v_{2}(j)+2
$$

$$
\begin{aligned}
& =1+0+2(k-1)-v_{2}(j)+2=1-v_{2}(j)+2 k \\
& =1-v_{2}(j)+v_{2}\left(L_{n}^{k}\right)
\end{aligned}
$$

By Theorem 3.1(iii), j is the largest integer satisfying $v_{2}(j) \leq 1$. Then by Theorem 3.1(ii), $j=2$ and $z\left(L_{n}^{k}\right)=n L_{n}^{k-1}$.

Case 3: $k \geq 2$ and $n \equiv 0(\bmod 6)$. Similar to Case 2 , we obtain by Lemma 2.2 that $v_{2}\left(L_{n}\right)=1$ and $v_{2}\left(F_{\frac{2 n L_{n}^{k-1}}{j}}\right)=v_{2}\left(L_{n}^{k}\right)+v_{2}(n)+2-v_{2}(j)$. By Theorem $3.1, j$ is the largest integer satisfying $v_{2}(j) \leq v_{2}(n)+2, j \mid L_{n}^{k-1}$, and $j=2^{\ell}$ for some $\ell \geq 0$. Therefore $\ell=\min \left\{v_{2}(n)+2, k-1\right\}$. So if $k \geq v_{2}(n)+3$, then $\ell=v_{2}(n)+2$ and

$$
z\left(L_{n}^{k}\right)=\frac{2 n L_{n}^{k-1}}{2^{\ell}}=\frac{n L_{n}^{k-1}}{2^{v_{2}(n)+1}}
$$

and if $k<v_{2}(n)+3$, then $\ell=k-1$ and

$$
z\left(L_{n}^{k}\right)=\frac{2 n L_{n}^{k-1}}{2^{\ell}}=\frac{n L_{n}^{k-1}}{2^{k-2}}
$$

This completes the proof.
Acknowledgment. This research is supported by Faculty of Science, Silpakorn University, grant number SRF-JRG-2558-03.

References

[1] B. A. Brousseau, Fibonacci and Related Number Theoretic Tables, Santa Clara, The Fibonacci Association, 1972.
[2] J. H. Halton, On the divisibility properties of Fibonacci numbers, Fibonacci Quart. 4 (1966), no. 3, 217-240.
[3] T. Koshy, Fibonacci and Lucas Numbers with Applications, New York, Wiley, 2001.
[4] T. Lengyel, The order of the Fibonacci and Lucas Numbers, Fibonacci Quart. 33 (1995), no. 3, 234-239.
[5] D. Marques, The order of appearance of powers of Fibonacci and Lucas numbers, Fibonacci Quart. 50 (2012), no. 3, 239-245.
[6] _, The order of appearance of integers at most one away from Fibonacci numbers, Fibonacci Quart. 50 (2012), no. 1, 36-43.
[7] P. Pongsriiam, Exact divisibility by powers of the Fibonacci and Lucas numbers, J. Integer Seq. 17 (2014), no. 11, Article 14.11.2, 12 pp.
[8] S. Vajda, Fibonacci and Lucas Numbers and the Golden Section: Theory and Applications, New York, Dover Publications, 2007.

Prapanpong Pongsriiam
Department of Mathematics
Faculty of Science
Silpakorn University
Nakhon Pathom, 73000, Thailand
E-mail address: prapanpong@gmail.com, pongsriiam_p@silpakorn.edu

