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A COMPLETE FORMULA FOR THE ORDER OF

APPEARANCE OF THE POWERS OF LUCAS NUMBERS

Prapanpong Pongsriiam

Abstract. Let Fn and Ln be the nth Fibonacci number and Lucas num-
ber, respectively. The order of appearance ofm in the Fibonacci sequence,
denoted by z(m), is the smallest positive integer k such that m divides
Fk. Marques obtained the formula of z(Lk

n) in some cases. In this article,
we obtain the formula of z(Lk

n) for all n, k ≥ 1.

1. Introduction

Let (Fn)n≥1 and (Ln)n≥1 be, respectively, the Fibonacci sequence and Lucas
sequence given by F1 = F2 = 1, Fn = Fn−1 + Fn−2 for n ≥ 3, L1 = 1, L2 = 3,
and Ln = Ln−1 + Ln−2 for n ≥ 3. For a positive integer m, the order of
appearance of m in the Fibonacci sequence, denoted by z(m), is the smallest
positive integer k such that m divides Fk. Recently, Marques [5] has obtained
the formula of z(Lk

n) in some cases as follows.

Theorem 1.1 (Marques [5, Theorem 1.2]). We have

(i) if k ≥ 1 and n ≡ 3 (mod 6), then z(Lk+1
n ) = nLk

n,

(ii) if n ≡ 6 (mod 12), then z(L2
n) = nLn, z(L

3
n) = nL2

n/2, and z(Lk+1
n ) =

nLk
n/4 for k ≥ 4,

(iii) if n ≡ 0 (mod 12) and k ≥ v2(n) + 2, then z(Lk+1
n ) =

nLk
n

2v2(n)+1
.

Notice that Theorem 1.1 does not include a formula for z(Lk+1
n ) when n =

12 · 2ℓ and k ≤ ℓ + 3 and does not give a formula for z(Lk
n) when n ≡ 1, 2

(mod 3). The purpose of this article is to give a formula for z(Lk
n) in all cases.

Our result is as follows.

Theorem 1.2. Let n ≥ 2. Then the following statements hold.

(i) z(Ln) = 2n.
(ii) If k ≥ 2 and n ≡ 1, 2 (mod 3), then z(Lk

n) = 2nLk−1
n .

(iii) If k ≥ 2 and n ≡ 3 (mod 6), then z(Lk
n) = nLk−1

n .
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(iv) If k ≥ 2 and n ≡ 0 (mod 6), then

z(Lk
n) =





nLk−1
n

2v2(n)+1
, if k ≥ v2(n) + 3;

nLk−1
n

2k−2
, if k < v2(n) + 3.

Note that Theorem 1.2(i) is already given in [6, Proposition 4.1] and Theo-
rem 1.2(iii) is the same as Theorem 1.1(i) but we include them here for com-
pleteness. Theorem 1.2(iv) extends (ii) and (iii) of Theorem 1.1. Finally,
Theorem 1.2(ii) is new.

2. Auxiliary results

We first recall some results which will be used in the proof of main theorems.

Lemma 2.1. We have

(i) if n ≥ 2, then Ln | Fm if and only if 2n | m,

(ii) n | Fm if and only if z(n) | m,

(iii) 5 ∤ Ln for any n.

Proof. These are well-known results but we will give some references for the
reader’s convenience. The statement (i) can be found, for example, in [3,
Theorem 16.5, p. 200], and (ii) is given by Halton in [2, Lemma 8, p. 222]. Note
that Halton [2] used α(n) instead of z(n) to denote the order of appearance
of n and called it by the old name: the rank of apparition. Here we follow
the notation used by Marques [5], and Fibonacci Association (see [1, Tables
of Fibonacci Entry Points]). Next the identity 5F 2

n − L2
n = 4(−1)n+1 can be

proved by induction, or by using Binet’s formula, and can also be found in [8,
p. 177]. Then (iii) follows immediately from this identity. �

Lemma 2.2 (Lengyel [4]). For each n ≥ 1, let vp(n) be the p-adic order of n.
Then

v2(Fn) =





0, if n ≡ 1, 2 (mod 3);

1, if n ≡ 3 (mod 6);

v2(n) + 2, if n ≡ 0 (mod 6),

v2(Ln) =





0, if n ≡ 1, 2 (mod 3);

2, if n ≡ 3 (mod 6);

1, if n ≡ 0 (mod 6),

v5(Fn) = v5(n), v5(Ln) = 0, and if p is a prime, p 6= 2, and p 6= 5, then

vp(Fn) =

{
vp(n) + vp(Fz(p)), if n ≡ 0 (mod z(p));

0, if n 6≡ 0 (mod z(p)),

vp(Ln) =

{
vp(n) + vp(Fz(p)), if z(p) is even and n ≡ z(p)

2 (mod z(p));

0, otherwise.
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Lemma 2.3 (Pongsriiam [7, Theorem 4]). Assume that k, m, n are positive

integers, m is even, and n ≥ 2. If Lk
n | m, then Lk+1

n | Fnm.

3. Main results

Theorem 3.1. Let n, k ≥ 2. Then z(Lk
n) =

2nLk−1

n

j
where j satisfies the

following conditions:

(i) j | Lk−1
n .

(ii) j = 2a for some a ≥ 0.

(iii) j is the largest integer such that v2(L
k
n) ≤ v2

(
F

2nL
k−1
n
j

)
.

Proof. Since Lk−1
n | 2Lk−1

n , we obtain by Lemma 2.3 that Lk
n | F2nLk−1

n
. By

Lemma 2.1(ii), z(Lk
n) | 2nL

k−1
n and therefore

(1) 2nLk−1
n = z(Lk

n)j for some j ≥ 1.

By the definition of z(Lk
n), we obtain Ln | Lk

n | Fz(Lk
n)
. Then by Lemma 2.1(i),

we have

(2) 2n | z(Lk
n).

From (1) and (2), we see that z(Lk
n) =

2nLk−1

n

j
and j | Lk−1

n . This proves (i).

In addition, by the definition of z(Lk
n) and Lemma 2.1(ii),

(3) j is the largest positive integer such that Lk
n | F

2nL
k−1
n
j

.

Next let p be an odd prime dividing Ln. Then vp(Ln) > 0. By Lemma 2.1(iii)
(or by Lemma 2.2), we see that p 6= 5. By Lemma 2.2, we obtain 2n ≡ 0

(mod z(p)), so
2nLk−1

n

j
≡ 0 (mod z(p)) and therefore

vp

(
F

2nL
k−1
n
j

)
= vp(n) + (k − 1)vp(Ln)− vp(j) + vp(Fz(p))

= vp(Ln) + (k − 1)vp(Ln)− vp(j)

= vp(L
k
n)− vp(j).(4)

Then (3) and (4) imply that vp(j) = 0 for every odd prime p. This proves (ii).
We also see that (3) and (4) imply (iii). This completes the proof. �

Next we give a proof of Theorem 1.2.

Proof of Theorem 1.2. By Lemma 2.1(i), the smallest k such that Ln | Fk is
k = 2n. So z(Ln) = 2n. Next we will use Theorem 3.1 to prove (ii), (iii), and
(iv) of Theorem 1.2. So assume that j is the integer given in Theorem 3.1.

Case 1: k ≥ 2 and n ≡ 1, 2 (mod 3). Then 2 ∤ Lk−1
n . Since j | Lk−1

n and
j = 2a for some a ≥ 0, we obtain that j = 1. So z(Lk

n) = 2nLk−1
n .

Case 2: k ≥ 2 and n ≡ 3 (mod 6). Then by Lemma 2.2,

v2

(
F

2nL
k−1
n
j

)
= v2

(2nLk−1
n

j

)
+ 2 = 1 + v2(n) + (k − 1)v2(Ln)− v2(j) + 2



450 P. PONGSRIIAM

= 1 + 0 + 2(k − 1)− v2(j) + 2 = 1− v2(j) + 2k

= 1− v2(j) + v2(L
k
n).

By Theorem 3.1(iii), j is the largest integer satisfying v2(j) ≤ 1. Then by
Theorem 3.1(ii), j = 2 and z(Lk

n) = nLk−1
n .

Case 3: k ≥ 2 and n ≡ 0 (mod 6). Similar to Case 2, we obtain by Lemma

2.2 that v2(Ln) = 1 and v2

(
F

2nL
k−1
n
j

)
= v2(L

k
n)+v2(n)+2−v2(j). By Theorem

3.1, j is the largest integer satisfying v2(j) ≤ v2(n) + 2, j | Lk−1
n , and j = 2ℓ

for some ℓ ≥ 0. Therefore ℓ = min{v2(n) + 2, k − 1}. So if k ≥ v2(n) + 3, then
ℓ = v2(n) + 2 and

z(Lk
n) =

2nLk−1
n

2ℓ
=

nLk−1
n

2v2(n)+1
,

and if k < v2(n) + 3, then ℓ = k − 1 and

z(Lk
n) =

2nLk−1
n

2ℓ
=

nLk−1
n

2k−2
.

This completes the proof. �
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