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Abstract. The work is devoted to study Fibonacci and tribonacci
numbers. We study the modular formulas and the periods of the
sequences.

1. Introduction

The investigation of Fibonacci sequence Fn = Fn−1 +Fn−2 with F0 =
0, F1 = 1 has been extended to algebraic aspect since D.D. Wall [7] in
1960. In particular researches including [1], [3], [6] were devoted to study
Fibonacci sequences by modulo n in connection with order and period.
The Fibonacci sequence has been studied in some arithmetic triangle
forms, for instance all Fibonacci numbers appear along the diagonal
of the Pascal triangle. Instead of triangle, if we display the Fibonacci
sequence in rectangle form [2], say a rectangle with three columns, and if
we take each numbers by mod F3 = 2 then we have the following tables

1 1 2 1 1 0
3 5 8 1 1 0
13 21 34 and 1 1 0
55 89 · · · 1 1 · · ·

We call the left table the 3 columns Fibonacci table. It shows (2 ·2)34+
8 = 144 and (2 · 2)55 + 13 = 233, where these can be expressed by

2F3F9 + F6 = F12 and 2F3F10 + F7 = F13.

And the right table, called the 3 columns modular table, shows a repeti-
tion of modular Fibonacci numbers. Similarly the 4 columns Fibonacci
and its modular table by mod T4 = 3
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1 1 2 3 1 1 2 0
5 8 13 21 2 2 1 0
34 55 89 144 1 1 2 0
233 377 610 · · · 2 2 1 · · ·

show that (2(3) + 1)233 − 34 = 1597, i.e., (2F4 + F1)F13 − F9 = F17.
Thus for instance, the 25th Fibonacci number F25 can be obtained by

(2F4 + F1)F21 + (−1)3F17 = (7)10946− 1597 = 75025 = F25.

When we say tribonacci sequence Tn, we mean a sequence like Fn, but
instead of two initial 0 and 1, the tribonacci sequence starts with three
values 0, 0 and 1 and each term afterwards is the sum of the preceding
three terms. Hence Tn = Tn−1 + Tn−2 + Tn−3 with T0 = 0, T1 = T2 = 1,
and the first a few tribonacci numbers are {0, 0, 1, 1, 2, 4, 7, 13, 24, 44, · · · }.

In this work we study Fibonacci and tribonacci sequence by display-
ing in rectangle form. By taking modular, we will find periods of the
sequences.

2. Fibonacci table and modular Fibonacci table

The Fibonacci number Fn can be extended to negative n such that
F−1 = 1, F−2 = −1 and F−3 = 2, and F−n = (−1)n+1Fn for all n ∈ Z.

Lemma 2.1. Let n, t ∈ Z.

(1) Fn+3 = 2F3Fn + Fn−3. If n = 3t + r (1 ≤ r ≤ 3) then Fn =
2F3F3(t−1)+r + F3(t−2)+r. So F3t+r ≡ F3(t−2)+r(modF3).

(2) Fn+4 = (2F4 + F1)Fn − Fn−4.
(3) If n = 4t+r (1 ≤ r ≤ 4) then Fn = (2F4+F1)F4(t−1)+r−F4(t−2)+r.

So, F4t+r ≡ F4(t−1)+r − F4(t−2)+r(modF4).

Proof. We have seen that Fn+3 = 2F3Fn +Fn−3 for n = 1, 2. Assume
Fi+3 = 2F3Fi + Fi−3 for all i ≤ n. Then (1) is clear that

F(n+1)+3 = Fn+3 + F(n−1)+3

= 2F3Fn + Fn−3 + 2F3Fn−1 + Fn−4

= 2F3(Fn + Fn−1) + Fn−3 + Fn−4 = 2F3Fn+1 + F(n+1)−3.

The rest can be proved similarly.

This can be generalized as follows.
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Theorem 2.2. If n ∈ Z then Fn+k = (2Fk +Fk−3)Fn +(−1)k−1Fn−k

for all k ≥ 3. If we write n = kt + r (t, r ∈ Z, 1 ≤ r ≤ k) then

Fn = Fkt+r = (2Fk + Fk−3)Fk(t−1)+r + (−1)k−1Fk(t−2)+r

and Fkt+r ≡ Fk−3Fk(t−1)+r + (−1)k−1Fk(t−2)+r (mod Fk).

Proof. The cases of k = 3 or 4 are due to Lemma 2.1. We now will
consider the 5 columns Fibonacci table:

1 1 2 3 5
8 13 21 34 55
89 144 233 377 610
987 1597 2584 4181 · · ·

It shows (2(5)+1)(377)+34 = 4181, i.e., (2F5 +F2)F16 +F11 = F21. So

Fn+5 = (2F5 + F2)F5 + Fn−5,

thus
Fn+i = (2Fi + Fi−3)Fn + (−1)i−1Fn−i for 3 ≤ i ≤ 5.

Assume it is true for i ≤ k − 1. Then in the k columns Fibonacci table,

Fn+k

= Fn+(k−1) + Fn+(k−2)

= (2Fk−1 + Fk−4)Fn + (−1)k−2Fn−(k−1) + (2Fk−2 + Fk−5)Fn +

(−1)k−1Fn−(k−2)

= (2(Fk−1 + Fk−2) + Fk−4 + Fk−5)Fn + (−1)k−3(−Fn−(k−1) + Fn−(k−2))

= (2Fk + Fk−3)Fn + (−1)k−1Fn−k,

since Fn−k +Fn−(k−1) = Fn−(k−2). Moreover for n = kt+ r (1 ≤ r ≤ k),

Fkt+r = F(n−k)+k = (2Fk + Fk−3)Fn−k + (−1)k−1Fn−2k

= (2Fk + Fk−3)Fk(t−1)+r + (−1)k−1Fk(t−2)+r.

Thus Fkt+r ≡ Fk−3Fk(t−1)+r + (−1)k−1Fk(t−2)+r (mod Fk).

It shows that Fkt+r is a combination of Fk(t−1)+r and Fk(t−2)+r with
coefficient 2Fk + Fk−3 and (−1)k−1. Inductively we have the following.

Theorem 2.3. Let n = kt + r (1 ≤ r ≤ k). Then every Fn can
be written by only four Fibonacci numbers Fk, Fk−3, Fr and Fk+r.
Moreover if Fkt+r = θ1Fk+r + θ2Fr with θ1, θ2 ∈ Z then Fk(t+1)+r =
((2Fk + Fk−3)θ1 + θ2)Fk+r + θ1Fr.
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Proof. Theorem 2.2 implies that Fkt+r = µFk(t−1)+r+(−1)k−1Fk(t−2)+r

with µ = 2Fk + Fk−3. We first assume k is odd. Then
F2k+r = µFk+r + Fr

F3k+r = µF2k+r +Fk+r = µ(µFk+r +Fr)+Fk+r = (µ2 +1)Fk+r +µFr

F4k+r = µF3k+r + F2k+r = (µ3 + 2µ)Fk+r + (µ2 + 1)µFr

F5k+r = µF4k+r + F3k+r = (µ4 + 3µ2 + 1)Fk+r + (µ3 + 2µ)µFr.
The first coefficient in this stage is µ times the first coefficient in previous
step added to the second coefficient in previous step, while the second
coefficient in this stage is the first coefficient in the previous step.

Now suppose that this pattern is true for all jth stages (1 ≤ j < t).
That is, we assume that if Fk(j−1)+r = χ1Fk+r + χ2Fr then Fkj+r =
θ1Fk+r + θ2Fr where θ1 = µχ1 + χ2 and θ2 = χ1 for χ1, χ2 ∈ Z. Due to
Theorem 2.2,

Fk(j+1)+r = µFkj+r + Fk(j−1)+r

= µ(θ1Fk+r + θ2Fr) + χ1Fk+r + χ2Fr

= (µθ1 + χ1)Fk+r + (µθ2 + χ2)Fr

= (µθ1 + θ2)Fk+r + (µχ1 + χ2)Fr = (µθ1 + θ2)Fk+r + θ1Fr.

The case when k is even can be prove similarly.

It gives a good way to compute Fn by knowing only a few information
about Fk, Fk−3, Fr and Fk+r. The first three are in the first row while
the last one is in the second row of the k columns Fibonacci table.

Example 2.4. For 50th Fibonacci F50, take k = 7 for instance, then

F50 = F7·7+1 = µF7·6+1 + F7·5+1 = (µ2 + 1)F7·5+1 + µF7·4+1

= (µ(µ2 + 1) + µ)F7·4+1 + (µ2 + 1)F7·3+1

= (µ(µ3 + 2µ) + µ2 + 1)F7·3+1 + (µ3 + 2µ)F7·2+1

= (µ(µ4 + 3µ2 + 1) + µ3 + 2µF7·2+1 + (µ4 + 3µ2 + 1)F7+1

= (µ(µ5 + 4µ3 + 3µ) + µ4 + 3µ2 + 1)F7+1 + (µ5 + 4µ3 + 3µ)F1

= 12, 586, 269, 025

by plugging F7 = 13, F4 = 3, F1 = 1, F8 = 21 and µ = 2F7 + F4 = 29.

Corollary 2.5.
(1) Every Fkt ≡ 0 (mod Fk). If n|m then Fn|Fm for every n,m ∈ Z.
(2) If k is even, every (t)th row is congruent to (t±2)th row by mod Fk

in the k columns modular table. The first two rows are repeated
in order, so the modular Fibonacci sequence by mod Fk is periodic
of length 2k.
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(3) If k is odd, every (t)th row is congruent to (t ± 2)th row with
negative sign by mod Fk in the k columns modular table. The
first four rows are repeated in order, so the modular Fibonacci
sequence by mod Fk is periodic of length 4k.

Proof. Since Fkt+r is written by Fk+r and Fr, Fkt = Fk(t−1)+k is a
linear combination of Fk+k and Fk, and again by Fk and F0. But since
both Fk and F0 are 0 by mod Fk, it follows Fkt ≡ 0(modFk). The rest
are due to Theorem 2.3.

Note that Fk|Fkt in (1) has been proved by various ways. One way
is due to show perF (n) = lcm(perF (p1), · · · ,perF (ps)) for all primes
pi|n [7]. The other method is to use the fact gcd(Fk, Ft) = Fgcd(k,t) in
[4]. Of course Fk|Fkt can be proved by induction on t after fixing k.
However it seems that the proof using the k columns modulo table is
more convenient than any other methods. Owing to Corollary 2.4, we
can construct the modular Fibonacci tables for 5 ≤ k ≤ 8:

mod (F5 = 5) mod (F6 = 8)
1 1 2 3 0
3 3 1 4 0

−1 −1 −2 −3 0
−3 −3 −1 −4 · · ·

1 1 2 3 5 0
5 5 2 7 1 0
1 1 2 3 5 0
5 5 2 7 1 · · ·

mod (F7 = 13) mod (F8 = 21)
1 1 2 3 5 8 0
8 −5 3 −2 1 −1 0

−1 −1 −2 −3 −5 −8 0
−8 5 −3 2 −1 1 · · ·

1 1 2 3 5 8 13 0
13 13 5 18 2 20 1 0
1 1 2 3 5 8 13 0

13 13 5 18 2 20 1 · · ·

3. Tribonacci table and modular tribonacci table

In this section we deal with tribonacci sequence Tn = Tn−1 + Tn−2 +
Tn−3 with T0 = 0 and T1 = T2 = 1. Similar to Fibonacci numbers, Tn

can be extended to negative n such that T−1 = 0, T−2 = 1, T−3 = −1
and T−4 = 0, etc. Let us consider the 4 columns tribonacci table

1 1 2 4
7 13 24 44
81 149 274 504
927 1705 3136 · · ·



582 EunMi Choi

It is clear to see that
T16 = (11)504 + (5)44 + 4 = (3T4 − 1)T12 + (T4 + 1)T8 + T4 = 5768
T19 = (11)3136 + (5)274 + 24 = (3T4− 1)T15 + (T4 + 1)T11 + T7 = 35890

Theorem 3.1. Let n = kt + r (1 ≤ r ≤ k). Then for 4 ≤ k ≤ 6,

Tkt+r = µ1Tk(t−1)+r + µ2Tk(t−2)+r + Tk(t−3)+r,

that is, Tn = µ1Tn−k+µ2Tn−2k+µ3Tn−3k, where the coefficients (µ1, µ2, µ3)
depending on k are as follows

k = 4 k = 5 k = 6
(µ1, µ2, µ3) (3T4 − 1, T4 + 1, 1) (3T5, 1, 1) (3T6,−T6 + 2, 1)

Proof. When k = 4 we will prove

Tn = (3T4 − 1)Tn−4 + (T4 + 1)Tn−8 + Tn−12.

If n = 12 then (3T4 − 1)T8 + (T4 + 1)T4 + T0 = 504 = T12. Assume that

Ti = µ1Ti−4 + µ2Ti−8 + Ti−12 for all 12 ≤ i ≤ n

with µ1 = 3T4 − 1 and µ2 = T4 + 1. Then
µ1T(n+1)−4 + µ2T(n+1)−8 + T(n+1)−12

= µ1(Tn−4 + T(n−4)−1 + T(n−4)−2) + µ2(Tn−8 + T(n−8)−1 + T(n−8)−2)
+ (Tn−12 + T(n−12)−1 + T(n−12)−2)

= (µ1Tn−4 +µ2Tn−8 +Tn−12)+(µ1T(n−1)−4 +µ2T(n−1)−8 +T(n−1)−12)
+ (µ1T(n−2)−4 + µ2T(n−2)−8 + T(n−2)−12)

= Tn + Tn−1 + Tn−2 = Tn+1.
If n < 12 then by considering negative tribonaccis T−1 = 0, T−2 = 1,
etc., without loss of generality we have

Tn = (3T4 − 1)Tn−4 + (T4 + 1)Tn−8 + Tn−12 for all n.
Similarly from the 5 columns tribonacci table

1 1 2 4 7
13 24 44 81 149
274 504 927 1705 3136
5768 10609 19513 35890 · · ·

we can find that{
T17 = 10690 = (21)504 + 24 + 1 = (3T5)T12 + T7 + T2

T23 = 410744 = (21)19513 + 927 + 44 = (3T5)T18 + T13 + T8

Moreover from the 6 columns tribonacci table
1 1 2 4 7 13
24 44 81 149 274 504
927 1705 3136 5768 10609 19513
35890 66012 121415 223317 410744 · · ·
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it can be seen that{
T20 = 66012 = (39)1705− (13− 2)44 + 1 = (3T6)T14 − (T6 − 2)T8 + T2

T22 = 223317 = (39)5768− (13− 2)149 + 4 = (3T6)T16 − (T6 − 2)T10 + T4

Now we assume that, for k = 5 or 6 the equality

Tn+ki = µ1Tn+k(i−1) + µ2Tn+k(i−2) + µ3Tn+k(i−3)

with (µ1, µ2, µ3) = (3T5, 1, 1) or (3T6,−T6 + 2, 1) hold for all 1 ≤ i < v.
Then

Tn+kv = T(n+k)+k(v−1)

= µ1T(n+k)+k(v−2) + µ2T(n+k)+k(v−3) + µ3T(n+k)+k(v−4)

= µ1Tn+k(v−1) + µ2Tn+k(v−2) + µ3Tn+k(v−3),

it proves the theorem.

Theorem 3.2. Let n = kt + r (1 ≤ r ≤ k). Then for 7 ≤ k ≤ 10,

Tkt+r = µ1Tk(t−1)+r + µ2Tk(t−2)+r + µ3Tk(t−3)+r

where the coefficients (µ1, µ2, µ3) are determined as follows.

k = 7 8 9 10
(3T7 − 1, 15, 1) (3T8 − 1,−1, 1) (3T9 − 2,−23, 1) (3T10 − 4, 41, 1)

Proof. The 7 columns tribonacci tables
1 1 2 4 7 13 24
44 81 149 274 504 927 1705
3136 5768 10609 19513 35890 66012 121415
223317 410744 755476 1389537 2555757 4700770 · · ·

shows that{
T22 = 223317 = (71)3136 + (15)44 + 1 = (3T7 − 1)T15 + 15T8 + T1

T27 = 4700770 = (71)66012 + (15)927 + 13 = (3T7 − 1)T20 + 15T13 + T6.

Thus similar to the proof of Theorem 3.1, it can be proved

T7t+r = (3T7 − 1)T7(t−1)+r + 15T7(t−2)+r + T7(t−3)+r (1 ≤ r ≤ 7).

From the 8 columns tribonacci table
1 1 2 4 7 13 24 44
81 149 274 504 927 1705 3136 5768
10609 19513 35890 66012 121415 223317 · · ·
1389537 2555757 4700770 8646064 15902591 · · ·

we find that{
T25 = 1389537 = (131)10609− (3)81+ = (3T8 − 1)T17 − 3T9 + T1

T29 = 15902591 = (131)121415− (3)927 + 7 = (3T8 − 1)T21 − 3T13 + T5
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hence T8t+r = (3T8 − 1)T8(t−1)+r − T8(t−2)+r + T8(t−3)+r (1 ≤ r ≤ 8).
The 9 and 10 columns tribonacci tables show that, for instance

{
T28 = (241)35890− (23)149 + 1 = (3T9 − 2)T19 − (23)T10 + T1

T33 = (241)755476− (23)3136 + 13 = (3T9 − 2)T24 − (23)T15 + T6

hence T9t+r = (3T9 − 2)T9(t−1)+r − 23T9(t−2)+r + T9(t−3)+r (1 ≤ r ≤ 9).
And
{

T31 = (443)121415 + (41)274 + 1 = (3T10 − 4)T21 + (41)T11 + T1

T34 = (443)410744 + (41)927 + 2 = (3T10 − 4)T24 + (41)T14 + T4

so T10t+r = (3T10−4)T10(t−1)+r +41T10(t−2)+r +T10(t−3)+r (1 ≤ r ≤ 10).
Analogue to the proof of Theorem 3.1, the induction yields the iden-

tity Tkt+r = µ1Tk(t−1)+r + µ2Tk(t−2)+r + µ3Tk(t−3)+r.

We note that Theorem 3.1 and 3.2 can be extended to negative n of
Tn by taking T−1 = 0, T−2 = 1, T−3 = −1, · · · . The following theorem
provides an efficient method for Tn with n < 0.

Theorem 3.3. Let −n = k(−t) + r < 0 (1 ≤ r ≤ k, t > 0). Then

T−n = Tk(−t)+r = −µ2Tk(−t+1)+r − µ1Tk(−t+2)+r + Tk(−t+3)+r

for 4 ≤ k ≤ 10, where the coefficients µ1 and µ2 (depending on k) are
as in Theorem 3.1 and 3.2.

Proof. Due to Theorem 3.1 and 3.2,

µ1Tk(−t+2)+r + µ2Tk(−t+1)+r + µ3Tk(−t)+r = Tk(−t+3)+r.

Since µ3 = 1 for all 4 ≤ k ≤ 10,

Tk(−t)+r = −µ1Tk(−t+2)+r − µ2Tk(−t+1)+r + Tk(−t+3)+r.

For instance, T−16 == −T5(−3)+4 − 21T5(−2)+4 + T5(−1)+4 = 56.

Theorem 3.4. Tkt+r (4 ≤ k ≤ 10) is a linear combination of T2k+r,
Tk+r and Tr.
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Proof. Due to Theorem 3.1 and 3.2, we have
Tkt+r

= µ1Tk(t−1)+r + µ2Tk(t−2)+r + µ3Tk(t−3)+r

= µ1(µ1Tk(t−2)+r + µ2Tk(t−3)+r + µ3Tk(t−4)+r) + µ2Tk(t−2)+r

+ µ3Tk(t−3)+r

= (µ2
1 + µ2)Tk(t−2)+r + (µ1µ2 + µ3)Tk(t−3)+r + µ1Tk(t−4)+r

= (µ2
1 + µ2)(µ1Tk(t−3)+r + µ2Tk(t−4)+r + µ3Tk(t−5)+r)

+ (µ1µ2 + µ3)Tk(t−3)+r + µ1Tk(t−4)+r

= (µ1(µ2
1 + µ2) + (µ1µ2 + µ3))Tk(t−3)+r + (µ2(µ2

1 + µ2) + µ3)Tk(t−4)+r

+ (µ2
1 + µ2)µ3Tk(t−5)+r

Hence after some steps, if we write

Tkt+r = θ1Tk(t−i−1)+r + θ2Tk(t−i−2)+r + θ3Tk(t−i−3)+r

for some i ∈ Z, then the next stage should be

Tkt+r = (µ1θ1+θ2)Tk(t−i−2)+r +(µ2θ1+θ3)Tk(t−i−3)+r +µ3θ1Tk(t−i−4)+r.

Thus if i = t− 4 then Tkt+r is a combination of T2k+r, Tk+r and Tr.

Example 3.5. For T50, take k = 7 for instance, then

T50 = T7(7)+1 = µ1T7(6)+1 + µ2T7(5)+1 + µ3T7(4)+1

with (µ1, µ2, µ3) = (3T7 − 1, 15, 1) = (71, 15, 1). So we have

T50

= 71T7(6)+1 + 15T7(5)+1 + T7(4)+1

= (71 · 71 + 15)T7(5)+1 + (15 · 71 + 1)T7(4)+1 + 71T7(3)+1

= 5056T7(5)+1 + 1066T7(4)+1 + 71T7(3)+1

= 360042T7(4)+1 + 75911T7(3)+1 + 5056T7(2)+1

= 25638893T7(3)+1 + 5405686T7(2)+1 + 360042T7(1)+1

= 1825767089T7(2)+1 + 384943437T7+1 + 25638893T1

= 5, 742, 568, 741, 225,

by plugging T7(2)+1 = 3136, T7+1 = 44 and T1 = 1.

We note that, unlike the Fibonacci case in Theorem 2.2, the coeffi-
cients (µ1, µ2, µ3) for tribonacci numbers in Theorem 3.1 and 3.2 depend
on k. Now taking modular by tribonacci number Tk, the next corollary
follows immediately.



586 EunMi Choi

Corollary 3.6. Let n = kt + r (1 ≤ r ≤ k). For 4 ≤ k ≤ 10,

Tkt+r ≡ ν1Tk(t−1)+r + ν2Tk(t−2)+r + ν3Tk(t−3)+r (mod Tk)

where the coefficients (ν1, ν2, ν3) are

k (ν1, ν2, ν3) k (ν1, ν2, ν3) k (ν1, ν2, ν3) k (ν1, ν2, ν3)
4 (−1, 1, 1) 5 (0, 1, 1) 6 (0, 2, 1) 7 (−1, 15, 1)
8 (−1,−1, 1) 9 (−2,−23, 1) 10 (−4, 41, 1)

Example 3.7. For T50, take k = 5 and by mod T5 = 7 for instance,
T50 = T5·9+5 ≡ T5·7+5 + T5·6+5 ≡ (T5·5+5 + T5·4+5) + T5·6+5

≡ T5·6+5 + T5·5+5 + T5·4+5 ≡ (T5·4+5 + T5·3+5) + T5·5+5 + T5·4+5

≡ T5·5+5 + 2T5·4+5 + T5·3+5 ≡ 2T5·4+5 + 2T5·3+5 + T5·2+5

≡ 2T5·3+5 + 3T5·2+5 + 2T5+5 ≡ 3T5·2+5 + 4T5+5 + 2T5 ≡ 1.

On the other hand, by taking different k = 10, we have
T50 = T10·4+10 ≡ −4T10·3+10 + 41T10·2+10 + T10·1+10

≡ (56)T10+10 + 98T10 + 57T0 ≡ 56 · 5 ≡ 131 (mod T10 = 149).

Corollary 3.5 yields k columns modular tribonacci tables, for instance
mod (T4 = 4) mod (T5 = 7) mod (T6 = 13)
1 1 2 0
3 1 0 0
1 1 2 0
3 1 0 0
1 1 2 0
3 1 0 · · ·

1 1 2 4 0
6 3 2 4 2
1 0 3 4 0
0 4 4 1 2
0 3 5 1 2
1 4 0 5 · · ·

1 1 2 4 7 0
11 5 3 6 1 10
4 2 3 9 1 0

10 11 8 3 9 7
6 9 9 11 3 10

11 11 6 2 6 · · ·

Theorem 3.8.

(1) In the 4 columns modular tribonacci table
(i) T4t+r + T4(t−1)+r ≡ T4(t−2)+r + T4(t−3)+r (mod T4 = 4).
(ii) T4t+4 ≡ 0 and T4t+2 ≡ 1 for every t
(iii) T4t+1 ≡ 1 and T4t+3 ≡ 2 if t is even
(iv) T4t+1 ≡ 3 and T4t+3 ≡ 0 if t is odd
(v) (t)th row is congruent to (t± 2)th row, i.e., Tk(t+2)+r ≡ Tkt+r.

(2) In the 5 columns modular tribonacci table
(i) T5t+r ≡ T5(t−2)+r + T5(t−3)+r (mod T5 = 7)
(ii) (t)th row is congruent to the sum of (t − 2)th and (t − 3)th

rows.

Proof. In the 4 columns tribonacci table, Corollary 3.5 yields (i) that

T4t+r ≡ −T4(t−1)+r + T4(t−2)+r + T4(t−3)+r (mod T4 = 4).
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We will only show (iv), and the rest can be proved similarly. Clearly
T4t+1 ≡ 3 if t = 1, 3. Assume t is odd and T4i+1 ≡ 3 (mod T4) for all
odd i ≤ t. Then

T4(t+2)+1 ≡ −T4(t+1)+r + T4t+r + T4(t−1)+r

≡ −(−T4t+r + T4(t−1)+r + T4(t−2)+r) + T4t+r + T4(t−1)+r

≡ 2 · 3− T4(t−2)+r ≡ 2− (−T4(t−3)+r + 3 + T4(t−5)+r)
≡ −1 + T4(t−3)+r − T4(t−5)+r ≡ 3.

We remark that in [5], the 4n subscripted tribonacci numbers was
proved that

T4(n+1) = 11T4n + 5T4(n−1) + T4(n−2)

by mathematical induction. This is the case for k = 4 in Theorem 3.1.
In this sense Theorem 3.1 and 3.2 dealt with the kn subscript tribonacci
numbers for 4 ≤ k ≤ 10. The identity

∑n
t=0 T4t = (T4n+4+6T4n+T4n−4−

T4)/T 2
4 was proved in [5] using matrix calculations. But Theorem 3.1

shows the identity easily.

Corollary 3.9. T 2
4

∑n
t=0 T4t = T4n+4 + 6T4n + T4n−4 − T4.

Proof. Since T4(3)+4 = (3T4−1)T4(2)+4+(T4+1)T4+4+T4 by Theorem
3.1, T 2

4

∑i
t=0 T4t = T4i+4+6T4i+T4i−4−T4 is true if i = 3. By induction

we assume the equality holds for all 1 ≤ i ≤ n. Then since T4 = 4, it
follows that
T4(n+1)+4 + 6T4(n+1) + T4(n+1)−4 − T4

= (3T4−1)T4n+4+(T4+1)T4(n−1)+4+T4(n−2)+4+6T4(n+1)+T4(n+1)−4−T4

= T 2
4 T4n+4 − (T4 + 1)T4n+4 + (T4 + 1)T4(n−1)+4 + T4(n−2)+4

+ 6T4(n+1) + T4(n+1)−4 − T4

= T 2
4 T4n+4 + T4(n+1) + (T4 + 2)T4n + T4n−4 − T4

= T 2
4 T4n+4 + T4n+4 + 6T4n + T4n−4 − T4

= T 2
4 T4n+4 + T 2

4

∑n
t=0 T4t = T 2

4

∑n+1
t=0 T4t.

4. Matrix for modular Fibonacci sequence

It is sometimes convenient to consider the k columns Fibonacci table
as the k columns Fibonacci matrix. Then Fkt+r can be regarded as the
(t + 1)th row and (r)th column entry e(t+1,r), so Theorem 2.2 implies
that

Fkt+r = e(t+1,r) = (2e(1,k) + e(1,k−3))e(t,r) + (−1)k−1e(t−1,r).
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Hence Fkt+r is a linear sum of three entries e(1,k), e(1,k−3) and e(1,r) in
the 1st row, and e(2,r) in the 2nd row of k columns Fibonacci matrix.
Moreover Fkt+r is expressed by two previous entries e(t,r) and e(t−1,r) in
the same (r)th column.

Theorem 4.1. Any Fibonacci number Fn = Fkt+r is

Fkt+r ≡ XM t−2

[
e(1,r)

e(2,r)

]
(mod Fk)

where X = [(−1)k−1 e(1,k−3)] and M =
[

0 1
(−1)k−1 e(1,k−3)

]
. More-

over if let a and b be roots of x2 − e(1,k−3)x + (−1)k = 0 then

Fkt+r ≡ 1
a− b

X

[
(−1)k−1(at−3 − bt−3) at−2 − bt−2

(−1)k−1(at−2 − bt−2) at−1 − bt−1

] [
e(1,r)

e(2,r)

]

Proof. In the k columns Fibonacci matrix, by mod Fk = e(1,k),

Fkt+r

= e(t+1,r)

≡ e(1,k−3)e(t,r) + (−1)k−1e(t−1,r)

≡ e(1,k−3)(e(1,k−3)e(t−1,r) + (−1)k−1e(t−2,r)) + (−1)k−1e(t−1,r)

≡ [e2
(1,k−3) + (−1)k−1]e(t−1,r) + (−1)k−1e(1,k−3)e(t−2,r)

≡ [e3
(1,k−3) + 2(−1)k−1e(1,k−3)]e(t−2,r) + (−1)k−1[e2

(1,k−3)

+ (−1)k−1]e(t−3,r)

≡ [e4
(1,k−3) + 3(−1)k−1e2

(1,k−3) + (−1)2(k−1)]e(t−3,r)

+ (−1)k−1[e3
(1,k−3) + 2(−1)k−1e(1,k−3)]e(t−4,r)

Continuing this process, Fkt+r is expressed by means of matrices that

Fkt+r ≡ [(−1)k−1 e(1,k−3)]
[

e(t−1,r)

e(t,r)

]
≡ XM

[
e(t−2,r)

e(t−1,r)

]

≡ XM2

[
e(t−3,r)

e(t−2,r)

]
≡ XM3

[
e(t−4,r)

e(t−3,r)

]
≡ · · ·

≡ XMu

[
e(t−u−1,r)

e(t−u,r)

]
( for u ≤ t− 2) ≡ XM t−2

[
e(1,r)

e(2,r)

]
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where M =
[

0 1
(−1)k−1 e(1,k−3)

]
. Observe that M = PDP−1 with

P =
[

1 1
a b

]
, D =

[
a 0
0 b

]
, with roots a, b of x2−e(1,k−3)x+(−1)k =

0. Thus a + b = e(1,k−3) and ab = (−1)k, so

Mu = PDuP−1 =
1

a− b

[ −ab(au−1 − bu−1) au − bu

−ab(au − bu) au+1 − bu+1

]

and it proves the Theorem that

Fkt+r ≡ 1
a− b

X

[
(−1)k−1(at−3 − bt−3) at−2 − bt−2

(−1)k−1(at−2 − bt−2) at−1 − bt−1

] [
e(1,r)

e(2,r)

]
.

Thus any Fkt+r is obtained by e(1,k−3), e(1,r), e(1,k) and e(2,r), where
the first three are in the 1st row and the last one is in the 2nd row in
the k columns Fibonacci matrix.

Example 4.2. For F99, consider k = 7 for instance. Write a and b
be roots of x2 − e(1,4)x− 1 = x2 − 3x− 1 = 0. Due to Theorem 4.1,

F99 = F7(14)+1 ≡
1

a− b
[1 e(1,4)]

[
0 1
1 e(1,4)

]12 [
e(1,1)

e(2,1)

]

=
1

a− b
[1 3]

[
a11 − b11 a12 − b−12

a12 − b12 a13 − b13

] [
1
8

]
.

But since a2 = 3a+1, a3 = 3(3a+1)+a = 10a+3, we have a11 = 2a+2,
a12 = 8a + 2 and a13 = 8. Hence

a11 − b11 ≡ 2(a− b), a12 − b12 ≡ 8(a− b), a13 − b13 ≡ 0(modF7 = 13),

and so F99 is congruent to

1
a− b

[1 3]
[

2(a− b) 8(a− b)
8(a− b) 0

] [
1
8

]
= [1 3]

[
2 8
8 0

] [
1
8

]
≡ 12.

In fact, F99 = 218, 922, 995, 834, 555, 169, 026 ≡ 12 (mod 13).

The smallest integer h > 0 satisfying Fh ≡ 0 and Fh+1 ≡ 1 (mod n)
is called the period of Fibonacci sequence by mod n. We write h =
perF (n). Investigating the period of Fibonacci have been studied since
Wall [7], so the period is usually called the Wall number by many re-
searchers ([1]). A theorem about the period by mod Fibonacci numbers
is as follows.
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Theorem 4.3. perF (Fk) =

{
2k if k : even

4k if k : odd
. In particular we have

the table.

k Fk perF (Fk) k Fk perF (Fk)
4 3 perF (3) = 8 = 2 · 4 5 5 perF (5) = 20 = 4 · 5
6 8 perF (8) = 12 = 2 · 6 7 13 perF (13) = 28 = 4 · 7
8 21 perF (21) = 16 = 2 · 8 9 34 perF (34) = 36 = 4 · 9
10 55 perF (55) = 20 = 2 · 10 11 89 perF (89) = 44 = 4 · 11
12 144 perF (144) = 24 = 2 · 12 13 233 perF (233) = 52 = 4 · 13

The proof is due to Theorem 2.3 and Corollary 2.4. And Theorem
4.2 shows that period perF (Fk) depends on only k not on Fk, and is
relatively short period comparing to the other perF (n). For example,

perF (987) = perF (F16) = 32, perF (1597) = perF (F17) = 68,

however perF (n) for 970 ≤ n ≤ 985 is equal to
2940, 970, 648, 368, 2928, 1400, 120, 652, 984,
220, 1680, 216, 1470, 1968, 120, 1980

which show very long periods.
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