References
- H. Belbachir and F. Bencherif, Sums of products of generalized Fibonacci and Lucas numbers, Ars Combinatoria, (to appear).
- Z. Cerin, Sums of products of generalized Fibonacci and Lucas numbers, Demonstratio Mathematica, 42(2) (2009), 247-258.
- Z. Cerin, Properties of odd and even terms of the Fibonacci sequence, Demonstratio Mathematica, 39(1) (2006), 55-60.
- Z. Cerin, On sums of squares of odd and even terms of the Lucas sequence, Proccedings of the Eleventh International Conference on Fibonacci Numbers and their Applications, Congressus Numerantium, 194(2009), 103-107.
- Z. Cerin, Some alternating sums of Lucas numbers, Central European Journal of Mathematics 3(1) (2005), 1-13. https://doi.org/10.2478/BF02475651
- Z. Cerin, Alternating Sums of Fibonacci Products, Atti del Seminario Matematico e Fisico dell'Universita di Modena e Reggio Emilia, 53(2005), 331-344.
- Z. Cerin and G. M. Gianella, On sums of squares of Pell-Lucas numbers, INTEGERS: Electronic Journal of Combinatorial Number Theory, 6(2006), A15.
- Z. Cerin and G. M. Gianella, Formulas for sums of squares and products of Pell numbers, Acc. Sc. Torino - Atti Sci. Fis., 140(2006), 113-122.
- Z. Cerin and G. M. Gianella, On sums of Pell numbers, Acc. Sc. Torino - Atti Sci. Fis., 141(2007), 23-31.
- A. F. Horadam, Generating Functions for Powers of a Certain Generalized Sequence of Numbers, Duke. Math. J., 32(1965), 437-446. https://doi.org/10.1215/S0012-7094-65-03244-8
- E. Lucas, Theorie des Fonctions Numeriques Simplement Periodiques, American Journal of Mathematics 1(1878), 184-240. https://doi.org/10.2307/2369308
- N. J. A. Sloane, On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/-njas/sequences/.