• Title/Summary/Keyword: Faults

Search Result 2,952, Processing Time 0.033 seconds

Experimental identification of multiple faults in rotating machines

  • Mahfoud, Jarir;Breneur, Claire
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.429-438
    • /
    • 2008
  • The aim of this paper is to define the required measurements and processing tools necessary for developing a maintenance approach applied to rotating machines in the presence of multiple faults. The system responses measured were accelerations and transmission errors. Acceleration measurements provide most of the information on bearing conditions, while transmission error measurements provide pertinent information on gear conditions. The measurements were carried out for several operating conditions (loads and speeds). System responses were processed in several analyzing domains (Time, Spectrum, and Cepstrum domains). The approach developed enables the detection and identification of combined faults and it can be applied to other types of rotating machines once the critical elements and their associated faults have been defined.

Actuator Fault Estimation Method using Hexacopter Symmetry (Hexacopter의 대칭성을 이용한 구동기 고장 추정 방법)

  • Lee, Chan Hyeok;Park, Min Kee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.519-523
    • /
    • 2016
  • This paper proposes a method of estimating the actuator faults of a hexacopter without using encoders when one or more of six actuators do not operate normally. In the case of the hexacopter, a Pseudo-Inverse matrix is generally used to obtain the rotational speed of the actuators because the matrix that transforms the rotational speed of the actuators into the thrust and torque of the body coordinate system is not a square matrix. However, the method based on the Pseudo-Inverse matrix cannot detect the actuator faults correctly because the Pseudo-Inverse matrix is approximate. In the proposed method, the actuator faults are estimated by modifying the transform matrix using the property that the actuators of the hexacopter are symmetrical. The simulation results show the effectiveness of the proposed method when faults occur in one or more of the six actuators.

Faults Detection in Hub Bearing with Minimum Variance Cepstrum (최소 분산 켑스트럼을 이용한 자동차 허브 베어링 결함 검출)

  • 박춘수;최영철;김양한;고을석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.593-596
    • /
    • 2004
  • Hub bearings not only sustain the body of a car, but permit wheels to rotate freely. Excessive radial or axial load and many other reasons can cause defects to be created and grown in each component. Therefore, vibration and noise from unwanted defects in outer-race, inner-race or ball elements of a Hub bearing are what we want to detect as early as possible. How early we can detect the faults has to do with how the detection algorithm finds the fault information from measured signal. Fortunately, the bearing signal has periodic impulse train. This information allows us to find the faults regardless how much noise contaminates the signal. This paper shows the basic signal processing idea and experimental results that demonstrate how good the method is.

  • PDF

Diagnosis of Multiple Crosstalk-Faults in Optical Cross Connects for Optical Burst Switching (광 버스트 스위칭을 위한 광 교환기에서의 다중 누화고장 진단기법)

  • 김영재;조광현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.251-258
    • /
    • 2003
  • Optical Switching Matrix (OSM) or Optical Multistage Interconnection Networks (OMINs) comprising photonic switches have been studied extensively as important interconnecting blocks for Optical Cross Connects (OXC) based on Optical Burst Switching (OBS). A basic element of photonic switching networks is a 2$\times$2 directional coupler with two inputs and two outputs. This paper is concerned with the diagnosis of multiple crosstalk-faults in OSM. As the network size becomes larger in these days, the conventional diagnosis methods based on tests and simulation become inefficient, or even more impractical. We propose a simple and easily implementable algorithm for detection and isolation of the multiple crosstalk-faults in OSM. Specifically. we develop an algorithm for isolation of the source fault in switching elements whenever the multiple crosstalk-faults arc detected in OSM. The proposed algorithm is illustrated by an example of 16$\times$16 OSM.

Fault Diagnosis and Neutral-Point Voltage Control according to Faults for a Three-level Neutral-Point-Clamped PWM Inverter (NPC 3-레벨 PWM 인버터에서 고장 발생에 따른 고장 진단과 중성점 전압 제어)

  • Son Ho-In;Kim Tae-Jin;Kang Dae-Wook;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.11-16
    • /
    • 2003
  • The 3-level converter/inverter system is very efficient in the ac motor drives of high voltage and high power application. This paper proposed a simple method to diagnose faults using change of current vector pattern in space vector diagram when the faults occurrence in the 3-level inverter and a control method that can protect system from unbalance of the neutral point voltage according to faults. The validity of the proposed method is demonstrated by the simulation results.

  • PDF

Matching-based Advanced Integrated Diagnosis Method (매칭에 기반한 발전된 고장 진단 방법)

  • Lim, Yo-Seop;Kang, Sung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4A
    • /
    • pp.379-386
    • /
    • 2007
  • In this paper, we propose an efficient diagnosis algorithm for multiple stuck-at faults. Because of using vectorwise intersections as an important metric of diagnosis, the proposed diagnosis algorithm can diagnose multiple defects in single stuck-at fault simulator. In spite of multiple fault diagnosis, the number of candidate faults is drastically reduced. For identifying faults, the variable weight, positive calculations and negative calculations are used for the matching algorithm. To verify our algorithm, experiments were performed for ISCAS85 and full-scan version of ISCAS89 benchmark circuits.

Design of controllers for Angle control of Aerodynamic Plant using SEVA (SEVA를 이용한 Aerodynamic Plant의 각도 제어를 위한 제어기의 설계)

  • 나승유;배희종;기효종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.49-49
    • /
    • 2000
  • Sensors are used to measure the states in need for control in a closed-loop system. Accuracy, reliability, stability of sensors are closely related to the controller performance. In case of sensor faults, they are detected by examining the sensor output values and the major values of the system. And then the types of the faults are recognized by the analysis of symptoms of faults. In this paper, a self-validating sensor is applied to the control of an aerodynamic plant system with the sensor fault problems in the potentiometer module for exact positioning to show the applicability. We propose a digital controller can provide a satisfactory loop performance even when the sensor faults occur.

  • PDF

The errors and reducing method in the frequency response function from impact hammer testing (충격햄머 가진으로 구한 주파수응답함수의 오차와 해결방법)

  • 안세진;정의봉
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.71-77
    • /
    • 2002
  • The spectrum of impulse response signal which is obtained from an impulse hammer testing is used for frequency response function, nevertheless it has serious faults when the record length for the signal processing is not very long. The faults cannot be avoided with the conventional signal analyzer that is processing all the signals as if they are always periodic. The signals generated by the impact hammer are undoubtedly non-periodic because of the damping, and are acquired for limited recording time due to the memory as well as the computation performance of the signal analyzer. This paper will make clear the relation between the faults and the length of recording time, and propose the way for solving the faults.

  • PDF

Diagnostics on Gear Faults Using Transmission Error : Simulation vs Experiment (전달오차를 이용한 기어고장진단: 해석 vs 실험적 방법론)

  • Park, Jungho;Ha, Jongmoon;Choi, Jooho;Park, Sungho;Youn, Byeng D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.499-502
    • /
    • 2014
  • This paper presents a comparison study between simulation and experiment for fault diagnostics of a spur gear. In simulation, fault diagnostics using transmission error (TE) was performed and concluded to be valid. In a real experiment, however, it is not as easy to detect faults of gears using TE as in simulation. In this paper, after seeding the various faults like tooth crack of different length, tooth breakage and spalling in test rig, TE was calculated. Then, several signal processing techniques were performed to overcome the limitations of an experiment in detecting the fault signals of TE. After signal processing, we could detect the various faults of spur gears and different amplitude of TE sparks from cracks of different length. Then we discussed the difference between simulation and experment.

  • PDF

A Study on the Classification of High Impedance Faults using Clarke Transformation and Plane Trajectory Method (Clarke법과 위상면궤적을 이용한 고저항 지락사고의 판별에 관한 연구)

  • Kim, C.H.;Shin, Y.C.;Ahn, S.P.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.243-245
    • /
    • 2001
  • This paper presents a new classification method for high impedance faults in power systems. Results of phase plane trajectory with Clarke modal transformation using postfault current and voltage are utilized to classify types of arcing faults. The performance of the proposed method is tested on a typical 154 kV korean transmission system under various fault conditions using EMTP. As can be seen from results, phase plane trajectory of postfault current should be combined with that of o component from Clarke modal transformation to give reliability of clear fault classification. Thus the proposed method can classify arcing faults including LIFs and HIFs accurately in power systems.

  • PDF