• Title/Summary/Keyword: Fast Frequency Hopping

Search Result 36, Processing Time 0.028 seconds

A Study of Anti-Jamming Performance using A-NED(Adaptive NED) Algorithm of SFH(Slow Frequency Hopping) Satellite Communication Systems in PBNJ (부분 대역 재밍 환경에서 SFH(Slow Frequency Hopping) 위성 통신 방식을 사용하는 A-NED(Adaptive NED) 알고리즘 항재밍 성능 분석)

  • Kim, Sung-Ho;Shin, Kwan-Ho;Kim, Hee-Jung;Kim, Young-Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.30-35
    • /
    • 2010
  • As of today, Frequency Hopping techniques are widely used for over-channel interference and anti-jamming communication systems. In this paper, analysis the performance of robustness on the focus of some general jamming channel. In FH/SS systems, usually SFH(Slow Frequency Hopping) and FFH(Fast Frequency Hopping) are took up on many special communication systems, the SFH, FFH are also combined with a channel diversity algorithm likes NED(Normalized Envelop Detection), EGC(Equal Gain Combines) and Clipped Combines to overcome jammer's attack. This paper propose Adaptive-NED and shows A-NED will be worked well than the others in the some general jamming environments.

A Study on the Experiment of the Direct Digital Frequency Synthesizer for the Fast Frequency Hopping System (고속 주파수 호핑용 직접 디지틀 주파수 합성기의 실현에 관한 연구)

  • 설확조;김원후
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1986.10a
    • /
    • pp.28-34
    • /
    • 1986
  • The frequency synthesizer for Fast Frequency Hopping System musy be capable of a fast tuning with a small step frequency over wide band. The most conventional frequency synthesizer that uses the phase locked loop (PLL) enables the wide band problem but have a poor side of the low resolution and the transient response. In this paper, we have discussed the experimental results of a direct digital frequency synthesizer which can be applicable to the Fast Frequency Hopping System, using digital-to-analoq (D/A)conversion techniques. With this system we can find the merits of a fine resolution and the possibility of a fast tuning leaving the problems of transent frequency.

  • PDF

The Study on the implementation and design of the RF transceiver for fast frequency hopping (고속주파수 도약용 RF송수신기 설계 및 구현에 대한 연구)

  • Kim, Ki-Jung;Kim, Jong-Sung;Bae, Moon-Kwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.6
    • /
    • pp.591-596
    • /
    • 2016
  • This paper presents a study on the subject for the design and implementation of high-speed frequency hopping RF transceiver used for tactical communications systems. Jump the transmission / reception frequency of the L-band to hop tens per second is possible by maximizing the immunity to interference, and is applicable to communication systems having a charging rotation function. To high-speed frequency hopping it is necessary to apply the necessary fast frequency hopping scheme DDS Driven PLL added. In this paper, the RF transceiver design and simulation analysis capabilities with fast frequency tactical communication systems, were implemented after the main test for functionality and performance. Was demonstrated hop high-speed jump tens per second through a test, the main transmission output, were measured RF key performance, such as received noise figure, by using the VSG and VSA generates a ${\pi}/4$ DQPSK modulated signal constellation and by EVM measurement that there is no problem in applying the communications system described above was pre-validated.

Analysis of the effect of Digital frequency synthesizer in FSK-Frequency-hopped data communications (FSK-주파수 도약 데이터 통신시스템에서의 디지털 주파수 합성기의 영향분석)

  • 송인근
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.879-886
    • /
    • 2003
  • Agile frequency synthesizers are the common device used for commandable, wide-band frequency hopping in frequency-hopped (FH) communications. In this paper, synthesizer phase transient effect and its compensation methods in an FH/FSK(Frequency Hopped Frequency Shift Keying) system are studied. Models for these analysis are developed and resulting performance degradations are computed. The basic PLL is difficult to implement for fast frequency hopping in narrowband radio communication systems. To solve this problem, digital frequency synthesizer/CPM (Continuous Phase Modulation)modulator is proposed. And it's performance is analyzed theoretically. The analysis show that fast frequency hopping is possible in frequency hopping system that use digital frequency synthesizer/CPM modulator.

A Styudy on the Implementation of Frequency Synthesizer for the Fast Frequency Hopping Spread Spectrum Communication system (대역 확산 통신방식에서 고속 주파수 호핑 시스템에 사용될 주파수 합성기의 실현에 관한 연구)

  • Kim, W.H.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.51-64
    • /
    • 1988
  • The frequency synthesizer thar has very short transient time is the key to construct the Fast Frequency Hopping(FFH) system. A Direct Digital Frequency Synthesizer(DDFS) whose transient time is in the nS range has been implemented and the performance of which has been examined through this paper. And by considering the hopping characteristic it is confirmed that the DDFS is suitable for the FFH system. Finally an improvement method which can greatly enhances the SNR with the state-of-the-art techniques and simplifies the system design is presented.

  • PDF

A Study on the Improvement of channel efficiency for FH-SS Tranceiver by applying the Frequency synthesizer with high speed switching time. (고속 주파수 합성기를 이용한 FH-SS 송수신기의 채널 효율 개선 연구)

  • 김재향;김기래
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.197-200
    • /
    • 2001
  • Recently, Switching time is the principal factor in a design of frerquency synthesizer for Spread-Spectrum Communications. fast switching frequency synthesizer is important to improve the channel efficiency in a Frequency Hopping Spread Spectrum (FH-SS) tranceiver. In this paper, we design the frequency synthesizer with fast switching time as fast as 1${\mu}\textrm{s}$. In frequency synthesizer design, we use the interpolated PLL method inserted memory Look-up table of DDS to reduce switching time, and have result of improved channel efficiency about 20% by applying to FH-SS Transceiver.

  • PDF

A Low Power Fast-Hopping Frequency Synthesizer Design for UWB Applications (UWB 응용을 위한 저전력 고속 스위칭 주파수 합성기의 설계)

  • Ahn, Tae-Won;Moon, Je-Cheol;Kim, Yong-Woo;Moon, Yong
    • 전자공학회논문지 IE
    • /
    • v.45 no.4
    • /
    • pp.1-6
    • /
    • 2008
  • A fast-hopping frequency synthesizer that reduces complexity and power consumption is presented for MB-OFDM UWB applications. The proposed architecture uses 3960 MHz LC VCO, 528 MHz ring oscillator, passive mixer and LC-tuned Q-enhancement BPF to generate Band Group 1 frequencies. The adjacent channel rejection ratio is less than -40 dBc for 3432 MHz and -H dBc for 4488 MHz. A fast switching SCL-tpre MUX is used to produce the required channel output signal and it takes less than 2.2 ns for band switching. The total power consumption is 47.9 mW from a 1.8 V supply.

Detection Probability Improvement Scheme Optimized for Frequency-Hopping Signal Detection (주파수 도약 신호 탐지에 최적화된 탐지 확률 향상 기법)

  • Lee, In-Seok;Oh, Seong-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.783-790
    • /
    • 2018
  • The frequency-hopping technique is one of the spread-spectrum techniques. Frequency hopping is a communication system in which the carrier frequency channel is hopped within the wideband. Therefore, a frequency-hopping system has such advantages as antijamming and low probability of intercept. This system is often used in military communications. Because frequency-hopping signal detection is difficult, it is an important research issue. A novel detection technique is proposed that can improve detection probability. When the received signal is transformed to a frequency domain sample by fast Fourier transform, spectral leakage lowers the detection probability. This problem can be solved by using the Hamming window, and the detection probability can be increased. However, in a frequency-hopping environment, the windowing technique lowers the detection probability. The proposed method solves this weakness. The simulation results show that the proposed detection technique improves the detection probability by as much as 13 %.

High speed matched filter synchronization circuit applied in frequency hopping FSK Transceiver (주파수도약 대역 확산 FSK 수신기의 고속 정합여파기 동기회로)

  • Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.8
    • /
    • pp.1543-1548
    • /
    • 2009
  • In this paper, a high speed code synchronization circuit is proposed. for fast code synchronization, matched filler method is used for initial code acquisition with two channel correlators. Particular frequency patterns of the limited number having the information about PN code start time are composed and transmitted repeatedly to increase the probability of accurate initial synchronization. And digital frequency synthesizer is proposed. And it's performance is analyzed theoretically. The analysis show that fast frequency hopping is possible in frequency hopping system that use digital frequency synthesizer.

A Study on Improvement of the Channel Efficiency of FH-SS Transceiver Based on DDS Technique

  • Kim, Gi-Rae;Choi, Young-Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.47-50
    • /
    • 2008
  • A novel high channel efficiency transceiver based on a fast acquisition frequency synthesizer has been designed. The direct digital synthesis (DDS) technique is applied and a simple memory look-up table is incorporated to expedite channel acquisition. The technique simplifies the frequency control process in the transceiver and thus reduces the channel switching time. As a result, the channel efficiency is improved. The designed transceiver is ideal for frequency hopping mobile communication applications.