Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.6
/
pp.850-858
/
2022
To deploy Gate Recurrent Units (GRU) on resource-constrained embedded devices, this paper presents a reconfigurable FPGA-based GRU accelerator that enables structured compression. Firstly, a dense GRU model is significantly reduced in size by hybrid quantization and structured top-k pruning. Secondly, the energy consumption on external memory access is greatly reduced by the proposed reuse computing pattern. Finally, the accelerator can handle a structured sparse model that benefits from the algorithm-hardware co-design workflows. Moreover, inference tasks can be flexibly performed using all functional dimensions, sequence length, and number of layers. Implemented on the Intel DE1-SoC FPGA, the proposed accelerator achieves 45.01 GOPs in a structured sparse GRU network without batching. Compared to the implementation of CPU and GPU, low-cost FPGA accelerator achieves 57 and 30x improvements in latency, 300 and 23.44x improvements in energy efficiency, respectively. Thus, the proposed accelerator is utilized as an early study of real-time embedded applications, demonstrating the potential for further development in the future.
This paper presents the design and implementation of Crystals-Kyber, a next-generation postquantum cryptography, as a hardware accelerator on an FPGA using High-Level Synthesis (HLS). We optimized the Crystals-Kyber algorithm using various directives provided by Vitis HLS, configured the AXI interface, and designed a hardware accelerator that can be implemented on an FPGA. Then, we used Vivado tool to design the IP block and implement it on the ZYNQ ZCU106 FPGA. Finally, the video was recorded and H.264 compressed with Python code in the PYNQ framework, and the video encryption and decryption were accelerated using Crystals-Kyber hardware accelerator implemented on the FPGA.
This paper presents the design and implementation of ML-DSA, a next-generation post-quantum cryptography, as a hardware accelerator on an FPGA using High-Level Synthesis (HLS). We optimized the ML-DSA algorithm using various directives provided by Vitis HLS, configured the AXI interface, and designed a hardware accelerator that can be implemented on an FPGA. Then, we used Vivado tool to design the IP block and implement it on the ZYNQ ZCU104 FPGA. Finally, the video and document were saved and processing with Python code in the PYNQ framework, and the video data’s digital signature generation and verification were accelerated using ML-DSA hardware accelerator implemented on the FPGA.
This paper presents that the SLH-DSA, a next-generation post-quantum cryptography, was designed as a hardware accelerator using High-Level Synthesis (HLS), implemented in the FPGA, and the performance analysis results show its superiority. The optimization design of the SLH-DSA was carried out using HLS technology, and the hardware accelerator of the digital signature and verification system was designed. The implementation and simulation were carried out using the ZYNQ UltraScale+ MPSoC ZCU104 FPGA. Finally, as a result of comparing the performance of the SLH-DSA hardware accelerator implemented in the FPGA with the CPU-based implementation, the execution time of the algorithm improved by about 596%, demonstrating the effectiveness of hardware acceleration.
본 연구에서는 이미지를 분류하는 인공 신경망 가속기를 최적화했고, 이를 구현하여 기존 인공 신경망 가속기와 성능을 비교 분석했다. FPGA(Field Programmable Fate Array) 보드를 이용하여 가속기를 구현했으며, 해당 보드의 내부 메모리인 BRAM 을 FIFO(First In First Out)구조로 설계하여 메모리 시스템을 구현했다. Approximate computing 기법을 효율적으로 적용하기 위해 FWL(Fractional Word Length)최적점을 분석했고, 이를 기반으로 인공 신경망 가속기의 부동 소수점 연산을 고정 소수점 연산으로 변환했다. 구현된 인공 신경망 가속기는 기존의 인공 신경망에 비해, 약 7.4%더 효율적인 전력소모량을 보였다.
Deep Reinforcement Learning (DRL) has demonstrated human-level performance in sequential decision-making tasks and enables edge devices to adapt autonomously to unknown environments. However, implementing DRL adaptation remains challenging due to its massive data interactions and extensive DNN computations. Existing FPGA-based DRL accelerators focus solely on computation acceleration, leading to prolonged adaptation times. This paper proposes an energy-efficient FPGA accelerator tailored for fast online DRL adaptation, leveraging three key innovations: 1) A Heterogeneous Replay Buffer (HRB) that reduces training iterations by up to 90%, 2) Mixed-Precision Selective Re-Training (MP-SELRET) that decreases computations by 12% while replacing 27.2% of 32-bit floating-point operations with 16-bit fixed-point operations, 3) A Mixed-Precision Heterogeneous Architecture (MPHA) that maximizes resource utilization and boosts throughput by 39.8%. The proposed accelerator significantly enhances the efficiency and speed of DRL adaptation, addressing the limitations of traditional scratch trainingmethods.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.1
/
pp.20-26
/
2021
Recent systems contain hardware and software components together for faster execution speed and less power consumption. In conventional hardware and software co-design, the ratio of software and hardware was divided by the designer's empirical knowledge. To find optimal results, designers iteratively reconfigure accelerators and applications and simulate it. Simulating iteratively while making design change is time-consuming. In this paper, we propose a hardware and software co-design platform for energy-efficient FPGA accelerator design. The proposed platform makes it easy for designers to find an appropriate hardware ratio by automatically generating application program code and hardware code by parameterizing the components of the accelerator. The co-design platform based on the Vitis unified software platform runs on a server with Xilinx Alveo U200 FPGA card. As a result of optimizing the multiplication accelerator for two matrices with 1000 rows, execution time was reduced by 90.7% and power consumption was reduced by 56.3%.
Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.10
/
pp.1279-1286
/
2021
The electrocardiogram (ECG) signal is a good indicator for early diagnosis of heart abnormalities. The ECG signal has a different reference normal signal for each person. And it requires lots of data to diagnosis. In this paper, we propose an adaptive OpenCL-based FPGA-GPU hybrid-layer platform to efficiently accelerate ECG signal diagnosis. As a result of diagnosing 19870 number of ECG signals of MIT-BIH arrhythmia database on the platform, the FPGA accelerator takes 1.15s, that the execution time was reduced by 89.94% and the power consumption was reduced by 84.0% compared to the software execution. The GPU accelerator takes 1.87s, that the execution time was reduced by 83.56% and the power consumption was reduced by 62.3% compared to the software execution. Although the proposed FPGA-GPU hybrid platform has a slower diagnostic speed than the FPGA accelerator, it can operate a flexible algorithm according to the situation by using the GPU.
최근 개인 정보 보호를 위해 주목 받고 있는 동형암호 알고리즘은 암호화된 상태로 덧셈과 곱셈 연산이 가능하여, 연산을 위한 복호화 과정 없이 데이터에 대한 가공이 가능하다. 따라서 이러한 동형암호 알고리즘이 개인 정보 보호를 위한 방법으로 떠오르고 있으며, 특히 완전동형암호 알고리즘의 경우 덧셈과 곱셈 연산을 모두 지원하며, 유효 연산 횟수에도 제한이 없어 응용 분야에서 널리 활용될 것으로 예상된다. 그러나, 완전동형암호 알고리즘의 경우 암호문의 크기가 평문대비 크게 증가하고, 다항식으로 구성된 암호문의 덧셈 및 곱셈 연산도 복잡하여 이에 대한 가속이 필요한 실정이다. 이에 FPGA 기반의 동형암호 가속기 개발이 많이 연구되고 있으며, 이를 통해 동형암호 연산의 특징을 이해하고 가속기 연구 동향을 알아보려 한다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.12
/
pp.1667-1674
/
2018
Recently, speeding up real time calculation using the specialized hardware accelerator is often used in the various engineering and science area, and the accelerators are required to include PCI express interconnection between FPGA and a host computer. The implementation of the high speed PCIe for the multi-giga bytes per second transmission is one of the most difficult issue in the development of the accelerators. There are several commercialized IP solutions and research results in the literature, but these solutions are required extra cost and design period to analyze the detailed implementation method. For the hardware accelerator on Xilinx FPGA, utilizing Xilinx's XDMA PCIe IP, which is provided without extra charge, can be the best solution in terms of the development period and cost. Consequently, this paper presents the evaluation system on Zynq-7000 FPGA and Windows 10 host computer, and analyze the performance of the PCIe IP with various configuration parameters.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.