리소스가 제한된 임베디드 장치에 GRU를 배포하기 위해 이 논문은 구조적 압축을 가능하게 하는 재구성 가능한 FPGA 기반 GRU 가속기를 설계한다. 첫째, 조밀한 GRU 모델은 하이브리드 양자화 방식과 구조화된 top-k 프루닝에 의해 크기가 대폭 감소한다. 둘째, 본 연구에서 제시하는 재사용 컴퓨팅 패턴에 의해 외부 메모리 액세스에 대한 에너지 소비가 크게 감소한다. 마지막으로 가속기는 알고리즘-하드웨어 공동 설계 워크플로의 이점을 얻는 구조화된 희소 GRU 모델을 처리할 수 있다. 또한 모든 차원, 시퀀스 길이 및 레이어 수를 사용하여 GRU 모델에 대한 추론 작업을 유연하게 수행할 수 있다. Intel DE1-SoC FPGA 플랫폼에 구현된 제안된 가속기는 일괄 처리가 없는 구조화된 희소 GRU 네트워크에서 45.01 GOPs를 달성하였다. CPU 및 GPU의 구현과 비교할 때 저비용 FPGA 가속기는 대기 시간에서 각각 57배 및 30배, 에너지 효율성에서 300배 및 23.44배 향상을 달성한다. 따라서 제안된 가속기는 실시간 임베디드 애플리케이션에 대한 초기 연구로서 활용, 향후 더 발전될 수 있는 잠재력을 보여준다.
본 논문에서는 High-Level Synthesis(HLS)을 이용하여, 차세대 양자내성암호인 Crystals-Kyber를 하드웨어 가속기로 설계하여 FPGA에 구현하였으며, 성능 분석결과 우수성을 제시한다. Crystals-Kyber 알고리즘을 Vitis HLS 에서 제공하는 여러 Directive 를 활용해서 최적화 설계를 진행하고, AXI Interface 를 구성하여 FPGA-기반 양자내성암호 하드웨어 가속기를 설계하였다. Vivado 툴을 이용해서 IP Block Design 를수행하고 ZYNQ ZCU106 FPGA 에 구현하였다. 최종적으로 PYNQ 프레임워크에서 Python 코드로 동영상 촬영 및 H.264 압축을 진행한 후, FPGA 에 구현한 Crystals-Kyber 하드웨어 가속기를 사용해서 동영상 암호화 및 복호화 처리를 가속화하였다.
본 논문에서는 High-Level Synthesis(HLS)을 이용하여 차세대 양자내성암호인 ML-DSA 를 하드웨어 가속기로 설계하고 FPGA 에 구현하였으며, 성능 분석 결과 그 우수성을 제시한다. Vitis HLS 에서 제공하는 다양한 Directive 를 활용하여 ML-DSA 알고리즘의 최적화 설계를 수행하고, AXI Interface 를 구성하여 FPGA-기반 양자내성암호 하드웨어 가속기를 설계하였다. Vivado 툴을 이용해서 IP Block Design 을 수행하고 ZYNQ ZCU104 FPGA 에 구현하였다. 최종적으로 PYNQ 프레임워크에서 Python 코드를 사용하여 저장된 동영상 및 문서를 FPGA 에 구현된 ML-DSA 하드웨어 가속기로 처리하여 영상 데이터의 전자서명 생성 및 검증 속도를 가속화하였다.
본 논문에서는 High-Level Synthesis(HLS)를 이용하여 미국 NIST 에서 차세대 양자내성암호로 표준화된 SLH-DSA 알고리즘을 하드웨어 가속기로 설계하고 FPGA 에 구현하였으며, 성능 분석 결과 그 우수성을 제시한다. HLS(High-Level Synthesis) 기술을 활용하여 SLH-DSA 알고리즘의 최적화 설계를 수행하고, 전자 서명 및 검증 시스템의 하드웨어 가속기를 설계하였다. ZYNQ UltraScale+ MPSoC ZCU104 FPGA 를 사용하여 구현 및 검증을 진행하였다. 최종적으로 FPGA 에 구현된 SLH-DSA 하드웨어 가속기의 성능을 CPU 기반 구현과 비교한 결과, 알고리즘의 수행 시간이 약 596% 향상되어 하드웨어 가속의 효과성을 입증하였다.
본 연구에서는 이미지를 분류하는 인공 신경망 가속기를 최적화했고, 이를 구현하여 기존 인공 신경망 가속기와 성능을 비교 분석했다. FPGA(Field Programmable Fate Array) 보드를 이용하여 가속기를 구현했으며, 해당 보드의 내부 메모리인 BRAM 을 FIFO(First In First Out)구조로 설계하여 메모리 시스템을 구현했다. Approximate computing 기법을 효율적으로 적용하기 위해 FWL(Fractional Word Length)최적점을 분석했고, 이를 기반으로 인공 신경망 가속기의 부동 소수점 연산을 고정 소수점 연산으로 변환했다. 구현된 인공 신경망 가속기는 기존의 인공 신경망에 비해, 약 7.4%더 효율적인 전력소모량을 보였다.
심층 강화학습(Deep Reinforcement Learning, DRL)은 순차적 의사결정 문제에서 인간 수준의 성능을 발휘하며, 엣지 디바이스가 알 수 없는 환경에 스스로 적응할 수 있는 능력을 제공한다. 그러나 대규모 데이터 처리와 방대한 DNN 연산량 요구로 인해 DRL 의 적응 구현은 여전히 어려운 과제다. 기존의 FPGA 기반 DRL 가속기는 계산 가속화에만 초점을 맞춘 탓에 적응 시간이 길어지는 한계를 가진다. 본 논문에서는 빠른 온라인 DRL 적용을 실현하기 위해 에너지 효율적인 FPGA 가속기를 제안한다. 제안된 가속기는 다음과 같은 핵심 기술을 통해 기존 한계를 극복한다: 1) 학습 반복 횟수를 최대 90%까지 줄이는 이기종 리플레이 버퍼(HRB), 2) 계산량을 12% 줄이고, 32 비트 부동소수점 연산의 27.2%를 16 비트 고정소수점 연산으로 대체하는 혼합 정밀도를 적용한 선택적 재학습(MP-SELRET), 3)FPGA 자원의 활용도를 극대화하며 처리량을 39.8% 향상시키는 혼합 정밀도 이기종 아키텍처(MPHA).
오늘날의 시스템들은 더 빠른 실행 속도와 더 적은 전력 소모를 위해 하드웨어와 소프트웨어 요소를 함께 포함하고 있다. 기존 하드웨어 및 소프트웨어 공동 설계에서 소프트웨어와 하드웨어의 비율은 설계자의 경험적 지식에 의해 나뉘었다. 설계자들은 반복적으로 가속기와 응용 프로그램을 재구성하고 시뮬레이션하며 최적의 결과를 찾는다. 설계를 변경하며 반복적으로 시뮬레이션하는 것은 시간이 많이 소모되는 일이다. 본 논문에서는 에너지 효율적인 FPGA 가속기 설계를 위한 하드웨어 및 소프트웨어 공동 설계 플랫폼을 제안한다. 제안하는 플랫폼은 가속기를 구성하는 주요 성분을 변수화해 응용 프로그램 코드와 하드웨어 코드를 자동으로 생성하여 설계자가 적절한 하드웨어 비율을 쉽게 찾을 수 있도록 한다. 공동 설계 플랫폼은 Xilinx Alveo U200 FPGA가 탑재된 서버에서 Vitis 플랫폼을 기반으로 동작한다. 공동 설계 플랫폼을 통해 1000개의 행을 가지는 두 행렬의 곱셈 연산 가속기를 최적화한 결과 응용프로그램보다 실행 시간이 90.7%, 전력 소모가 56.3% 감소하였다.
Electrocardiogram (ECG) 신호는 심장의 이상을 조기에 진단하기 위한 좋은 지표이다. ECG 신호는 사람마다 기준이 되는 정상 신호의 형태가 다르고, 진단에 많은 데이터가 필요하다. 본 논문에서는 ECG 신호 진단을 효율적으로 가속하기 위한 OpenCL을 기반 FPGA-GPU 혼합 계층 적응형 플랫폼을 제안한다. 플랫폼에서 MIT-BIH 부정맥 신호데이터의 19870개 ECG 신호를 진단한 결과 FPGA 가속기는 진단 시간이 1.15s로 소프트웨어로 실행했을 때보다 89.94% 감소하였고, 전력 소모는 84.0% 감소하였다. GPU 가속기는 실행 시간이 소프트웨어 대비 83.56% 감소한 1.87s였으며, 전력 소모는 62.3% 감소하였다. 제안하는 FPGA-GPU 혼합 플랫폼은 FPGA 가속기보다 진단 속도가 느리지만 GPU를 이용하여 상황에 따라 유연한 알고리즘을 동작할 수 있다.
최근 개인 정보 보호를 위해 주목 받고 있는 동형암호 알고리즘은 암호화된 상태로 덧셈과 곱셈 연산이 가능하여, 연산을 위한 복호화 과정 없이 데이터에 대한 가공이 가능하다. 따라서 이러한 동형암호 알고리즘이 개인 정보 보호를 위한 방법으로 떠오르고 있으며, 특히 완전동형암호 알고리즘의 경우 덧셈과 곱셈 연산을 모두 지원하며, 유효 연산 횟수에도 제한이 없어 응용 분야에서 널리 활용될 것으로 예상된다. 그러나, 완전동형암호 알고리즘의 경우 암호문의 크기가 평문대비 크게 증가하고, 다항식으로 구성된 암호문의 덧셈 및 곱셈 연산도 복잡하여 이에 대한 가속이 필요한 실정이다. 이에 FPGA 기반의 동형암호 가속기 개발이 많이 연구되고 있으며, 이를 통해 동형암호 연산의 특징을 이해하고 가속기 연구 동향을 알아보려 한다.
하드웨어 가속기를 사용하여 다양한 실시간 계산을 하는 여러 공학/과학 분야에서 많은 경우에 FPGA와 호스트 컴퓨터를 PCI express(PCIe)로 연결하는 시스템 구성이 요구된다. 하지만, 초당 수 기가바이트의 데이터를 주고 받는 고속 인터페이스인 PCIe의 구현은 하드웨어 가속기 개발의 가장 큰 어려움 중에 하나이다. 상용 제품과 논문을 통해서 여러 PCIe IP 솔루션을 찾을 수 있지만, 고가의 비용을 지불해서 구매하거나, 별도의 시간과 노력을 투자해서 PCIe를 구현해야 한다. 따라서, Xilinx사의 FPGA를 기반의 하드웨어 가속기를 구현할 때는 Xilinx사에서 무료로 제공 하는 XDMA PCIe IP를 사용하는 것이 개발 기간 및 비용 단축을 위한 최선의 선택이 될 수 있다. 이러한 이유로 본 논문에서는 Xilinx사의 PCIe IP의 성능 평가를 위해 Zynq-7000 FPGA개발보드와 Windows 10 호스트 컴퓨터로 평가 시스템을 구성하고, PCIe IP의 구성 파라미터에 의한 전송 속도 성능 변화에 대해 평가 분석한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.