• Title/Summary/Keyword: F0 function

Search Result 1,071, Processing Time 0.023 seconds

DECOMPOSITION FORMULAS AND INTEGRAL REPRESENTATIONS FOR THE KAMPÉ DE FÉRIET FUNCTION F0:3;32:0;0 [x, y]

  • Choi, Junesang;Turaev, Mamasali
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.679-689
    • /
    • 2010
  • By developing and using certain operators like those initiated by Burchnall-Chaundy, the authors aim at investigating several decomposition formulas associated with the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ function $F_{2:0;0}^{0:3;3}$ [x, y]. For this purpose, many operator identities involving inverse pairs of symbolic operators are constructed. By employing their decomposition formulas, they also present a new group of integral representations of Eulerian type for the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ function $F_{2:0;0}^{0:3;3}$ [x, y], some of which include several hypergeometric functions such as $_2F_1$, $_3F_2$, an Appell function $F_3$, and the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ functions $F_{2:0;0}^{0:3;3}$ and $F_{1:0;1}^{0:2;3}$.

A Study on Test for New Better than Used of an unknown specified age ($NBU-t_0$ Class에 대한 검정법 연구)

  • 김환중
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.2
    • /
    • pp.37-45
    • /
    • 2001
  • A survival variable is a non-negative random variable X with distribution function F(t) satisfying F(0) : 0 and a survival function F(t): 1-F(t). This variable is said to be New Better than Used of specified age t$_{0}$ if F(x+ t$_{0}$)$\leq$F(x).F(t$_{0}$) for all x$\geq$0 and a fixed t$_{0}$. We propose the test for H$_{0}$ : F(x+t$_{0}$)=F(x).F(t$_{0}$) for all x$\geq$0 against H$_1$: F(x+t$_{0}$) $\leq$ F(x).F(t$_{0}$) for all x$\geq$0 when the specified age to is unknown but can be estimated from the data when t$_{0}$$_{p}$, the pth percentile of F. This test statistic, which is based on the normalized spacings between the ordered observations, is readily applied in the case of small sample. Also, our test is more simple than Ahmad's test (1998). Finally, the performance of our test is presented.our test is presented.

  • PDF

RADIUS CONSTANTS FOR FUNCTIONS ASSOCIATED WITH A LIMACON DOMAIN

  • Cho, Nak Eun;Swaminathan, Anbhu;Wani, Lateef Ahmad
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.353-365
    • /
    • 2022
  • Let 𝓐 be the collection of analytic functions f defined in 𝔻 := {ξ ∈ ℂ : |ξ| < 1} such that f(0) = f'(0) - 1 = 0. Using the concept of subordination (≺), we define $$S^*_{\ell}\;:=\;\{f{\in}A:\;\frac{{\xi}f^{\prime}({\xi})}{f({\xi})}{\prec}{\Phi}_{\ell}(\xi)=1+{\sqrt{2}{\xi}}+{\frac{{\xi}^2}{2}},\;{\xi}{\in}{\mathbb{D}}\}$$, where the function 𝚽(ξ) maps 𝔻 univalently onto the region Ω bounded by the limacon curve (9u2 + 9v2 - 18u + 5)2 - 16(9u2 + 9v2 - 6u + 1) = 0. For 0 < r < 1, let 𝔻r := {ξ ∈ ℂ : |ξ| < r} and 𝒢 be some geometrically defined subfamily of 𝓐. In this paper, we find the largest number 𝜌 ∈ (0, 1) and some function f0 ∈ 𝒢 such that for each f ∈ 𝒢 𝓛f (𝔻r) ⊂ Ω for every 0 < r ≤ 𝜌, and $${\mathcal{L} _{f_0}}({\partial}{\mathbb{D}_{\rho})\;{\cap}\;{\partial}{\Omega}_{\ell}\;{\not=}\;{\emptyset}$$, where the function 𝓛f : 𝔻 → ℂ is given by $${\mathcal{L}}_f({\xi})\;:=\;{\frac{{\xi}f^{\prime}(\xi)}{f(\xi)}},\;f{\in}{\mathcal{A}}$$. Moreover, certain graphical illustrations are provided in support of the results discussed in this paper.

ESTIMATES FOR SECOND NON-TANGENTIAL DERIVATIVES AT THE BOUNDARY

  • Gok, Burcu;Ornek, Bulent Nafi
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.689-707
    • /
    • 2017
  • In this paper, a boundary version of Schwarz lemma is investigated. We take into consideration a function f(z) holomorphic in the unit disc and f(0) = 0, f'(0) = 1 such that ${\Re}f^{\prime}(z)$ > ${\frac{1-{\alpha}}{2}}$, -1 < ${\alpha}$ < 1, we estimate a modulus of the second non-tangential derivative of f(z) function at the boundary point $z_0$ with ${\Re}f^{\prime}(z_0)={\frac{1-{\alpha}}{2}}$, by taking into account their first nonzero two Maclaurin coefficients. Also, we shall give an estimate below ${\mid}f^{{\prime}{\prime}}(z_0){\mid}$ according to the first nonzero Taylor coefficient of about two zeros, namely z = 0 and $z_1{\neq}0$. The sharpness of these inequalities is also proved.

First Order Differential Subordinations and Starlikeness of Analytic Maps in the Unit Disc

  • Singh, Sukhjit;Gupta, Sushma
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.395-404
    • /
    • 2005
  • Let α be a complex number with 𝕽α > 0. Let the functions f and g be analytic in the unit disc E = {z : |z| < 1} and normalized by the conditions f(0) = g(0) = 0, f'(0) = g'(0) = 1. In the present article, we study the differential subordinations of the forms $${\alpha}{\frac{z^2f^{{\prime}{\prime}}(z)}{f(z)}}+{\frac{zf^{\prime}(z)}{f(z)}}{\prec}{\alpha}{\frac{z^2g^{{\prime}{\prime}}(z)}{g(z)}}+{\frac{zg^{\prime}(z)}{g(z)}},\;z{\in}E,$$ and $${\frac{z^2f^{{\prime}{\prime}}(z)}{f(z)}}{\prec}{\frac{z^2g^{{\prime}{\prime}}(z)}{g(z)}},\;z{\in}E.$$ As consequences, we obtain a number of sufficient conditions for star likeness of analytic maps in the unit disc. Here, the symbol ' ${\prec}$ ' stands for subordination

  • PDF

On the McShane integrability

  • Kim, Jin-Yee
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.377-383
    • /
    • 1996
  • For a given separable space X which contains no copy of $C_0$ and a weakly compact T, we show that a Dunford integrable function $f : [a,b] \to X$ is intrinsically-separable valued if and only if f is McShane integrable. Also, for a given separable space X which contains no copy of $C_0$, a weakly compact T and a Dunford integrable function f we show that if there exists a sequence $(f_n)$ of McShane integrable functions from [a,b] to X such that for each $x^* \in X^*, x^*f_n \to x^*f$ a.e., then f is McShane integrable. Finally, let X contain no copy of $C_0$. If $f : [a,b] \to X$ is McShane integrable, then F is a countably additive on $\sum$.

  • PDF

SOME REMARKS FOR λ-SPIRALLIKE FUNCTION OF COMPLEX ORDER AT THE BOUNDARY OF THE UNIT DISC

  • Akyel, Tugba
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.743-757
    • /
    • 2021
  • We consider a different version of Schwarz Lemma for λ-spirallike function of complex order at the boundary of the unit disc D. We estimate the modulus of the angular derivative of the function $\frac{zf^{\prime}(z)}{f(z)}$ from below for λ-spirallike function f(z) of complex order at the boundary of the unit disc D by taking into account the zeros of the function f(z)-z which are different from zero. We also estimate the same function with the second derivatives of the function f at the points z = 0 and z = z0 ≠ 0. We show the sharpness of these estimates and present examples.

ANALYTIC AND GEOMETRIC PROPERTIES OF OPEN DOOR FUNCTIONS

  • Li, Ming;Sugawa, Toshiyuki
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.1
    • /
    • pp.267-280
    • /
    • 2017
  • In this paper, we study analytic and geometric properties of the solution q(z) to the differential equation q(z) + zq'(z)/q(z) = h(z) with the initial condition q(0) = 1 for a given analytic function h(z) on the unit disk |z| < 1 in the complex plane with h(0) = 1. In particular, we investigate the possible largest constant c > 0 such that the condition |Im [zf"(z)/f'(z)]| < c on |z| < 1 implies starlikeness of an analytic function f(z) on |z| < 1 with f(0) = f'(0) - 1 = 0.

NBU- $t_{0}$ Class 에 대한 검정법 연구

  • 김환중
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.04a
    • /
    • pp.185-191
    • /
    • 2000
  • A survival variable is a nonnegative random variable X with distribution function F and a survival function (equation omitted)=1-F. This variable is said to be New Better than Used of specified age $t_{0}$ if (equation omitted) for all $\chi$$\geq$0 and a fixed to. We propose the test for $H_{0}$ : (equation omitted) for all $\chi$$\geq$0 against $H_1$:(equation omitted) for all $\chi$$\geq$0 when the specified age $t_{0}$ is unknown but can be estimated from the data when $t_{0}$=${\mu}$, the mean of F, and also when $t_{0}$=$\xi_p$, the pth percentile of F. This test statistic, which is based on a linear function of the order statistics from the sample, is readily applied in the case of small sample. Also, this test statistic is more simple than the test statistic of Ahmad's test statistic (1998). Finally, the performance of this test is presented.

  • PDF

ON BOUNDS FOR THE DERIVATIVE OF ANALYTIC FUNCTIONS AT THE BOUNDARY

  • Ornek, Bulent Nafi;Akyel, Tugba
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.785-800
    • /
    • 2021
  • In this paper, we obtain a new boundary version of the Schwarz lemma for analytic function. We give sharp upper bounds for |f'(0)| and sharp lower bounds for |f'(c)| with c ∈ ∂D = {z : |z| = 1}. Thus we present some new inequalities for analytic functions. Also, we estimate the modulus of the angular derivative of the function f(z) from below according to the second Taylor coefficients of f about z = 0 and z = z0 ≠ 0. Thanks to these inequalities, we see the relation between |f'(0)| and 𝕽f(0). Similarly, we see the relation between 𝕽f(0) and |f'(c)| for some c ∈ ∂D. The sharpness of these inequalities is also proved.