References
- T. Akyel and B. N. Ornek, Some remarks on Schwarz lemma at the boundary, Filomat, 31 (13) (2017), 4139-4151. https://doi.org/10.2298/FIL1713139A
- T. A. Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Variables and Elliptic Equations, 58 (2013), 571-577. https://doi.org/10.1080/17476933.2012.718338
- H. P. Boas, Julius and Julia: Mastering the art of the Schwarz lemma, American Mathematical Monthly, 117 (2010), 770-785. https://doi.org/10.4169/000298910X521643
- V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci., 122 (2004), 3623-3629. https://doi.org/10.1023/B:JOTH.0000035237.43977.39
- G. M. Golusin, Geometric Theory of Functions of Complex Variable Translations of Mathematical Monographs 26, American Mathematical Society, 1969.
- Z. Huang, D. Zhao and H. Li, A boundary Schwarz lemma for pluriharmonic mappings between the unit polydiscs of any dimensions, Filomat, 34 (2020), 3151-3160. https://doi.org/10.2298/FIL2009151H
- M. Mateljevic, N. Mutavdzc, B. N. Ornek, Note on some classes of holomorphic functions related to Jack's and Schwarz's Lemma, DOI: 10.13140/RG.2.2.25744.15369, ResearchGate.
- P. R. Mercer, Sharpened versions of the Schwarz Lemma, Journal of Mathematical Analysis and Applications, 205 (1997), 508-511. https://doi.org/10.1006/jmaa.1997.5217
- P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski's lemma, Journal of Classical Analysis, 12 (2018), 93-97. https://doi.org/10.7153/jca-2018-12-08
- P. R. Mercer, An improved Schwarz Lemma at the boundary, Open Mathematics, 16 (2018), 1140-1144. https://doi.org/10.1515/math-2018-0096
- R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc., 128 (2000), 3513-3517. https://doi.org/10.1090/S0002-9939-00-05463-0
- B. N. Ornek, Bounds of Hankel determinants for analytic function, Korean J. Math., 28 (4) (2020), 699-715. https://doi.org/10.11568/KJM.2020.28.4.699
- B. N. Ornek and T. Duzenli, Boundary analysis for the derivative of driving point impedance functions, IEEE Transactions on Circuits and Systems II: Express Briefs, 65 (9) (2018), 1149-1153. https://doi.org/10.1109/tcsii.2018.2809539
- Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.
- H. Unkelbach, Uber die Randverzerrung bei konformer Abbildung, Mathematische Zeitschrift, 43 (1938), 739-742. https://doi.org/10.1007/BF01181115