DOI QR코드

DOI QR Code

ON BOUNDS FOR THE DERIVATIVE OF ANALYTIC FUNCTIONS AT THE BOUNDARY

  • Ornek, Bulent Nafi (Department of Computer Engineering, Amasya University) ;
  • Akyel, Tugba (The Faculty of Engineering and Natural Sciences, Maltepe University)
  • Received : 2021.07.14
  • Accepted : 2021.11.30
  • Published : 2021.12.30

Abstract

In this paper, we obtain a new boundary version of the Schwarz lemma for analytic function. We give sharp upper bounds for |f'(0)| and sharp lower bounds for |f'(c)| with c ∈ ∂D = {z : |z| = 1}. Thus we present some new inequalities for analytic functions. Also, we estimate the modulus of the angular derivative of the function f(z) from below according to the second Taylor coefficients of f about z = 0 and z = z0 ≠ 0. Thanks to these inequalities, we see the relation between |f'(0)| and 𝕽f(0). Similarly, we see the relation between 𝕽f(0) and |f'(c)| for some c ∈ ∂D. The sharpness of these inequalities is also proved.

Keywords

References

  1. T. Akyel and B. N. Ornek, Some remarks on Schwarz lemma at the boundary, Filomat, 31 (13) (2017), 4139-4151. https://doi.org/10.2298/FIL1713139A
  2. T. A. Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Variables and Elliptic Equations, 58 (2013), 571-577. https://doi.org/10.1080/17476933.2012.718338
  3. H. P. Boas, Julius and Julia: Mastering the art of the Schwarz lemma, American Mathematical Monthly, 117 (2010), 770-785. https://doi.org/10.4169/000298910X521643
  4. V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci., 122 (2004), 3623-3629. https://doi.org/10.1023/B:JOTH.0000035237.43977.39
  5. G. M. Golusin, Geometric Theory of Functions of Complex Variable Translations of Mathematical Monographs 26, American Mathematical Society, 1969.
  6. Z. Huang, D. Zhao and H. Li, A boundary Schwarz lemma for pluriharmonic mappings between the unit polydiscs of any dimensions, Filomat, 34 (2020), 3151-3160. https://doi.org/10.2298/FIL2009151H
  7. M. Mateljevic, N. Mutavdzc, B. N. Ornek, Note on some classes of holomorphic functions related to Jack's and Schwarz's Lemma, DOI: 10.13140/RG.2.2.25744.15369, ResearchGate.
  8. P. R. Mercer, Sharpened versions of the Schwarz Lemma, Journal of Mathematical Analysis and Applications, 205 (1997), 508-511. https://doi.org/10.1006/jmaa.1997.5217
  9. P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski's lemma, Journal of Classical Analysis, 12 (2018), 93-97. https://doi.org/10.7153/jca-2018-12-08
  10. P. R. Mercer, An improved Schwarz Lemma at the boundary, Open Mathematics, 16 (2018), 1140-1144. https://doi.org/10.1515/math-2018-0096
  11. R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc., 128 (2000), 3513-3517. https://doi.org/10.1090/S0002-9939-00-05463-0
  12. B. N. Ornek, Bounds of Hankel determinants for analytic function, Korean J. Math., 28 (4) (2020), 699-715. https://doi.org/10.11568/KJM.2020.28.4.699
  13. B. N. Ornek and T. Duzenli, Boundary analysis for the derivative of driving point impedance functions, IEEE Transactions on Circuits and Systems II: Express Briefs, 65 (9) (2018), 1149-1153. https://doi.org/10.1109/tcsii.2018.2809539
  14. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.
  15. H. Unkelbach, Uber die Randverzerrung bei konformer Abbildung, Mathematische Zeitschrift, 43 (1938), 739-742. https://doi.org/10.1007/BF01181115