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RADIUS CONSTANTS FOR FUNCTIONS ASSOCIATED
WITH A LIMACON DOMAIN

Nak Eun Cho, Anbhu Swaminathan, and Lateef Ahmad Wani

Abstract. Let A be the collection of analytic functions f defined in
D := {ξ ∈ C : |ξ| < 1} such that f(0) = f ′(0)− 1 = 0. Using the concept
of subordination (≺), we define

S∗` :=
{
f ∈ A :

ξf ′(ξ)
f(ξ)

≺ Φ`(ξ) = 1 +
√

2ξ +
ξ2

2
, ξ ∈ D

}
,

where the function Φ`(ξ) maps D univalently onto the region Ω` bounded
by the limacon curve(

9u2 + 9v2 − 18u+ 5
)2
− 16

(
9u2 + 9v2 − 6u+ 1

)
= 0.

For 0 < r < 1, let Dr := {ξ ∈ C : |ξ| < r} and G be some geometrically
defined subfamily of A. In this paper, we find the largest number ρ ∈
(0, 1) and some function f0 ∈ G such that for each f ∈ G

Lf (Dr) ⊂ Ω` for every 0 < r ≤ ρ,
and

Lf0 (∂Dρ) ∩ ∂Ω` 6= ∅,
where the function Lf : D→ C is given by

Lf (ξ) :=
ξf ′(ξ)
f(ξ)

, f ∈ A.

Moreover, certain graphical illustrations are provided in support of the
results discussed in this paper.

1. Introduction

Let D denote the open unit disc {ξ ∈ C : |ξ| < 1} in the complex plane C.
Let H := H(D) be the collection of all holomorphic functions defined on D.
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Further, let A consist of f ∈ H satisfying the normalizations f(0) = 0 and
f ′(0) = 1. Let G1 and G2 be two subfamilies of A. The G1-radius for the
family G2 is the largest number ρ ∈ (0, 1) such that r−1f(rξ) ∈ G1 for each
f ∈ G2, where 0 < r ≤ ρ. Moreover, if we can find a function f0 ∈ G2 such that
r−1f0(rξ) 6∈ G1 whenever r > ρ, then the radius constant ρ is said to be sharp.
The problem of finding the number ρ is called a radius problem. For more
information related to radius problems of various kinds, we refer to [7, Chapter
13]. Let f ∈ A and

Lf (ξ) := ξf ′(ξ)
f(ξ) .(1)

By S we symbolize the family of functions f ∈ A that are univalent in D,
i.e., f ∈ S if it takes no value more than once. A region Ω ⊂ C is called
a starlike region with respect to a point ζ0 ∈ Ω if for every point ζ ∈ Ω,
{ζ0 + t(ζ − ζ0) : 0 ≤ t ≤ 1} lies in Ω. A function f ∈ A is said to be a starlike
function with respect to a point ζ0 ∈ f(D) if f maps D onto a region that is
starlike with respect to ζ0. In the special case ζ0 = 0, we simply say f is a
starlike function. If S∗ denotes the collection of all starlike functions, then the
inclusion S∗ ( S holds. The functions in S∗ are characterized by the inequality
Re (Lf (ξ)) > 0, see Duren [5, p. 41]. Furthermore, let S∗(α) consist of f ∈ A
satisfying Re (Lf (ξ)) > α for some α ∈ [0, 1). Clearly, S∗(α) ⊆ S∗ with S∗(0)
providing the equality.

For f, g ∈ H, we say that f is subordinate to g, written as f ≺ g, if there
exists an analytic function w : D → D satisfying w(0) = 0 such that f(ξ) =
g(w(ξ)). In particular, if the function g is univalent, then f ≺ g if and only if
f(0) = g(0) and f(D) ⊂ g(D). For further details related to subordination, we
refer to [2, 13]. Using subordination, Ma and Minda [10] introduced

S∗(Φ) := {f ∈ A : Lf (ξ) ≺ Φ(ξ)} ,(2)

where the function Φ : D→ C satisfies (i) Φ is analytic univalent with Re(Φ) >
0, (ii) Φ sends D onto a region that is starlike with respect to Φ(0) = 1, (iii)
Φ(D) is symmetric about the real-line, and (iv) Φ′(0) > 0. Obviously, for each
Φ satisfying (i)-(iv), the containment S∗(Φ) ⊆ S∗ holds. In the recent past,
several Ma-Minda type families of functions having nice geometrical properties
have been introduced and discussed by many geometric function theorists. Here
we mention only a few of them and for a comprehensive list of such families, we
refer to [19, 20]. The family S∗L := S∗(

√
1 + ξ) associated with the lemniscate

of Bernoulli was introduced in [17] which was later on generalized to S∗L(α) :=
S∗(α+ (1− α)

√
1 + ξ) for some α ∈ [0, 1) in [9]. The family S∗RL := S∗(ΦRL),

where

ΦRL(ξ) :=
√

2− (
√

2− 1)
√

1− ξ
1 + 2(

√
2− 1)ξ

, ξ ∈ D(3)
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was introduced in [11]. The family S∗(eξ) was introduced and discussed in
[12] and generalized to S∗α,e := S∗(α + (1 − α)eξ) in [9]. The family S∗C :=
S∗(1 + 4ξ/3 + 2ξ2/3) associated with a cardioid has been introduced in [15].
For 0 ≤ α < 1, the family B(α) := S∗(1 + ξ/(1− αξ2)) associated with the
lemniscate of Booth was introduced in [3, 8]. The family S∗` := S∗(1 +

√
2ξ +

ξ2/2) associated with a limacon was introduced in [22]. Very recently, the
family S∗Ne := S∗(1 + ξ− ξ3/3) associated with a nephroid was introduced and
discussed in [19,20].

1.1. The family S∗
`

Among the families mentioned above, our focus in this paper is on the family
S∗` := S∗(Φ`), where the function Φ`(ξ) := 1 +

√
2ξ + ξ2/2 sends D univalently

onto the interior of a dimpled-curve called limacon (Figure 1) given by(
9u2 + 9v2 − 18u+ 5

)2 − 16
(
9u2 + 9v2 − 6u+ 1

)
= 0.(4)

Figure 1. The limacon curve
(
9u2 + 9v2 − 18u+ 5

)2 −
16
(
9u2 + 9v2 − 6u+ 1

)
= 0.

Apart from other results, the authors in [22] discussed the structural formula
and a few coefficient estimates including the Fekete-Szegö problem for functions
belonging to S∗` . Later on, the authors in [21] constructed certain examples
of functions belonging to the family S∗` and discussed several subordination
results related to it. In this paper, we consider the family S∗` and study some
radius results. The study of radius problems for families of functions with
special geometries is continuing to be an active area of research in the theory
of univalent functions. We redefine the radius problem for the family S∗` in
geometrical terms as follows.
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Definition. Let Dr := {ξ : |ξ| < r} and Ω` := Φ`(D). By R`(G) for the family
G ⊂ A we mean the largest number ρ ∈ (0, 1) such that each f ∈ G satisfies

Lf (Dr) ⊂ Ω` for every 0 < r ≤ ρ,

and
Lf0(∂Dρ) ∩ ∂Ω` 6= ∅ for some f0 ∈ G,

where Lf (ξ) is defined in (1).

For recent works on radius problems, we refer to [1,3,4,6,11,12,15,16,18,19].

2. Main results

In order to prove our results, the following lemma is required.

Lemma 2.1. Let (3− 2
√

2)/2 < a < (3 + 2
√

2)/2, and let ra and Ra be defined
as

ra =
{
a+
√

2− 3/2, (3− 2
√

2)/2 < a ≤ 3/2,
3/2 +

√
2− a, 3/2 ≤ a < (3 + 2

√
2)/2,

and

Ra =
{

3/2 +
√

2− a, (3− 2
√

2)/2 < a ≤ (1 +
√

2)/2,
1
2

√
a(2a−1)2

a−1 , (1 +
√

2)/2 ≤ a < (3 + 2
√

2)/2.

Then
{w ∈ C : |w − a| < ra} ⊆ Ω` ⊆ {w ∈ C : |w − a| < Ra} .

Proof. From the definition of the function Φ`(ξ), it is easy to verify that the
limacon curve (4) has following parametric equations:

u(t) = 1 +
√

2 cos t+ cos 2t
2 , v(t) =

√
2 sin t+ sin 2t

2 , t ∈ (−π, π].

The square of the distance from the point (a, 0) to the points on the limacon
curve (4) is

ζ(t) :=(u(t)− a)2 + (v(t))2

=− 2(a− 1)y2 +
√

2(3− 2a)y + (a− 1)a+ 9
4 =: g(y),

where y = cos t, t ∈ (−π, π]. Since the limacon curve is symmetric about
the real line, it is sufficient to take t ∈ [0, π]. Simple calculation shows that
g′(y) = 0 implies

y = 3− 2a
2
√

2(a− 1)
=: y0(a).

It is easy to verify that the number y0(a) lies between −1 and 1 if and only
if a ≥

(
1 +
√

2
)
/2 ≈ 1.20711, see Figure 2. Moreover, for this a, we have
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g′′(y0(a)) < 0. This shows that the function g(y) is increasing in [−1, y0(a)]
and decreasing in [y0(a), 1] for

(
1 +
√

2
)
/2 ≤ a <

(
3 + 2

√
2
)
/2. Hence

min
0≤t≤π

ζ(t) = min {g(−1), g(1)} for 1 +
√

2
2 ≤ a < 3 + 2

√
2

2

and

max
0≤t≤π

ζ(t) = g(y0(a)) = (1− 2a)2a

4(a− 1) for 1 +
√

2
2 ≤ a < 3 + 2

√
2

2 .

Also

g(1)− g(−1) = 2
√

2(3− 2a),

so that

g(−1) ≤ g(1) if a ≤ 3
2

and

g(1) ≤ g(−1) if a ≥ 3
2 .

Therefore, we conclude that

ra = min
0≤t≤π

√
ζ(t) =

{√
g(−1) = a−

( 3
2 −
√

2
)
, 1+

√
2

2 < a ≤ 3
2 ,√

g(1) = 3
2 +
√

2− a, 3
2 ≤ a <

3+2
√

2
2

and

Ra = max
0≤t≤π

√
ζ(t) =

√
g(y0(a))

= 1
2

√
a(2a− 1)2

a− 1 for 1 +
√

2
2 ≤ a < 3 + 2

√
2

2 .

Furthermore, for
(
3− 2

√
2
)
/2 < a ≤

(
1 +
√

2
)
/2, a simple verification (graph-

ically as well) reveals that g(y) is increasing whenever −1 ≤ y ≤ 1. Thus, in
this case

ra = min
0≤t≤π

√
ζ(t) =

√
g(−1) = a−

(
3
2 −
√

2
)

and

Ra = max
0≤t≤π

√
ζ(t) =

√
g(1) = 3

2 +
√

2− a.

Combining, we obtain the desired results. �
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(a) a ∈
(

3−2
√

2
2 , 1+

√
2

2

)
(b) a ∈

(
1+
√

2
2 , 3+2

√
2

2

)
Figure 2. Plots of y0(a) = 3−2a

2
√

2(a−1) .

Recall that the Janowski family S∗[A,B] is the collection of f ∈ A satisfying
Lf (ξ) ∈ P[A,B], where

P[A,B] :=
{
p(ξ) = 1 +

∞∑
n=1

cnξ
n : p(ξ) ≺ 1 +Aξ

1 +Bξ
, ξ ∈ D

}
.

Geometrically, a function p ∈ H satisfying p(0) = 1 belongs to P[A,B] if and
only if the region p(D) lies inside the open disk which has the line-segment[

1−A
1−B ,

1+A
1+B

]
as its diameter.

Theorem 2.2. For the Janowski function family S∗[A,B], we have

R` (S∗[A,B]) = ρ =

min
{

1, 2
√

2−1
2A+(2

√
2−3)B

}
, if 0 ≤ B < A ≤ 1,

min
{

1, 2
√

2+1
2A−(2

√
2+3)B

}
, if − 1 ≤ B < A ≤ 1.

To prove this theorem, we make use of the following lemma.

Lemma 2.3 ([14, Lemma 2.1, p. 267]). If p ∈ P[A,B], then for |ξ| = r < 1,∣∣∣∣p(ξ)− 1−ABr2

1−B2r2

∣∣∣∣ ≤ (A−B)r
1−B2r2 .

Proof. Let f ∈ S∗[A,B]. Then Lf ∈ P[A,B], and Lemma 2.3 yields∣∣∣∣Lf (ξ)− 1−ABr2

1−B2r2

∣∣∣∣ ≤ (A−B)r
1−B2r2 .(5)

The inequality (5) represents a disk with center at (1−ABr2)/(1−B2r2) and
radius (A−B)r/(1−B2r2).

Case 1. For 0 ≤ B < A ≤ 1, we have

B2 ≤ AB =⇒ 1−B2 ≥ 1−AB =⇒ (1−AB)/(1−B2) ≤ 1,
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and hence (1− ABr2)/(1− B2r2) ≤ 1. Thus, by Lemma 2.1, the disk (5) lies
completely inside Ω` if

(A−B)r
1−B2r2 ≤

1−ABr2

1−B2r2 +
√

2− 3
2 .

An easy simplification yields r ≤ 2
√

2−1
2A+(2

√
2−3)B . Further, consider the function

f0(ξ) :=
{
ξ (1 +Bξ)

A−B
B , if B 6= 0,

ξeAξ, if B = 0.

The function f0(ξ) satisfies Lf0(ξ) = (1 +Aξ)/(1 +Bξ), implying that f0 ∈
S∗[A,B]. Also, for ξ0 = − 2

√
2−1

2A+(2
√

2−3)B ∈ ∂Dρ, we have

Lf0(ξ0) = 3
2 −
√

2 ∈ ∂Ω`,

i.e.,

Lf0(∂Dρ) ∩ ∂Ω` =
{

3
2 −
√

2
}
6= ∅.

This proves that ρ = min
{

1, 2
√

2−1
2A+(2

√
2−3)B

}
if 0 ≤ B < A ≤ 1.

Case 2. Let −1 ≤ B < A ≤ 1. Then B ≤ 0 implies that (1 − ABr2)/(1 −
B2r2) ≥ 1. Therefore, in this case, the disk (5) lies in the interior of Ω` if

(A−B)r
1−B2r2 ≤

3
2 +
√

2− 1−ABr2

1−B2r2 .

Solving, we get the desired value of the radius constant ρ. Choosing ξ0 = ρ and
f0 ∈ S∗[A,B] defined above, it is easy to verify that Lf0(ξ0) = 3/2+

√
2 ∈ ∂Ω`.

�

Specializing A and B in Theorem 2.2, the followings are obtained.

Corollary 2.4. R` (S∗) = (2
√

2 + 1)/(2
√

2 + 5) ≈ 0.489042.

Corollary 2.5. R` (C) = (2
√

2 + 1)/(2
√

2 + 3) ≈ 0.656854.

Before going to the next result, we mention that S∗L(α) ⊂ S∗` for α ≥
3/2 −

√
2 ≈ 0.0857864, and S∗α,e ⊂ S∗` for α ≥

(
3− 2

(
e−
√

2
))
/(2− 2e) ≈

−0.114028 (see [21, Theorem 3]). Therefore, R`(G) = 1 for (i) G = S∗L(α) when-
ever α ≥ 3/2−

√
2 and (ii) G = S∗α,e whenever α ≥

(
3− 2

(
e−
√

2
))
/(2− 2e).

Theorem 2.6. For the function families B(α), S∗L(α), and S∗α,e in Section 1,
we have

(i) R` (B(α)) = −1+
√
−4
√

2α+9α+1
2
√

2α−α =: ρ1(α), 0 < α < 1.

(ii) R` (S∗L(α)) = (√2− 1
2 )(2(1−α)−(√2− 1

2 ))
(1−α)2 =: ρ2(α), 0 ≤ α ≤ (3− 2

√
2)/2.

In particular, R` (S∗L) = 3
√

2− 13/4.
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(iii) R`

(
S∗α,e

)
= log

(
−α+

√
2+ 1

2
1−α

)
=: ρ3(α), − 1

e−1 ≤ α ≤
3−2(e−√2)

2(1−e) .

The estimates on the radius constants in (i) and (ii) are best possible.

Proof. (i) Let f ∈ B(α). Then Lf (ξ) ≺ Gα(ξ) := 1 + ξ/(1 − αξ2) and hence,
for |ξ| = r, we have

|Lf (ξ)− 1| ≤ max
|ξ|=r

∣∣∣∣ ξ

1− αξ2

∣∣∣∣ ≤ r

1− αr2 .(6)

In view of Lemma 2.1, the disk (6) lies completely inside the limacon region
Ω` if r/(1−αr2) ≤

√
2− 1/2, or if

(√
2− 1/2

)
αr2 + r−

(√
2− 1/2

)
≤ 0. This

gives r ≤ R` (B(α)) = ρ1(α). For sharpness, consider the function

fB(ξ) =

ξ
(

1+
√
αξ

1−
√
αξ

)1/(2
√
α)
, α ∈ (0, 1),

ξeξ, α = 0.

It is easy to verify that LfB(ξ) = Gα(ξ), and hence fB ∈ B(α). Also, a simple
calculation shows that

LfB(ξ1) = 3
2 −
√

2 ∈ ∂Ω` for ξ1 = −ρ1(α).

Therefore,

LfB
(
∂Dρ1(α)

)
∩ ∂Ω` =

{
3
2 −
√

2
}
6= ∅.

This proves that R` (B(α)) = ρ1(α). Figure 3 shows that the radius constant
ρ1(α) is best possible.

(a) α = 0.1 (b) α = 0.9

Figure 3. Sharpness of ρ1(α).

(ii) Let f ∈ S∗L(α). Then Lf (ξ) ≺ α+ (1− α)
√

1 + ξ and hence

|Lf (ξ)− 1| ≤
∣∣∣α+ (1− α)

√
1 + ξ − 1

∣∣∣
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= (1− α)
∣∣∣1−√1 + ξ

∣∣∣
≤ (1− α)

(
1−
√

1− r
)
, |ξ| = r.

Applying Lemma 2.1, we have f ∈ S∗` if

(1− α)
(
1−
√

1− r
)
≤
√

2− 1/2,
which further gives r ≤ ρ2(α). Since the function

fL(ξ) = ξ + 1
2(1− α)ξ2 + 1

16(1− α)(1− 2α)ξ3 + · · ·

satisfies LfL(ξ) = α+(1−α)
√

1 + ξ, it follows that fL(ξ) is a member of S∗L(α).
In addition,

LfL(ξ2) = 3
2 −
√

2 ∈ ∂Ω` for ξ2 = −ρ2(α) ∈ ∂Dρ2 .

This shows that R` (S∗L(α)) = ρ2(α), as illustrated in Figure 4.

(a) α = 0 (b) α = 1
2

(
3− 2

√
2
)

Figure 4. Sharpness of ρ2(α).

(iii) Since f ∈ S∗α,e gives Lf (ξ) ≺ α + (1 − α)eξ. Therefore, for |ξ| = r, we
have

|Lf (ξ)− 1| ≤ (1− α)
∣∣eξ − 1

∣∣ ≤ (1− α) (er − 1) ≤ (2
√

2− 1)/2
provided r ≤ ρ3(α). Thus, f ∈ S∗` if |ξ| = r ≤ ρ3(α). Since, for Φα,e(ξ) =
α+ (1− α)eξ,

Φα,e(ρ3(α)) = 1
2 +
√

2 < 3
2 +
√

2 = Φ`(1),

we conclude that the radius constant ρ3(α) can be improved further. See Fig-
ure 5 for graphical illustrations. Observe that, for each − 1

e−1 ≤ α ≤
3−2(e−√2)

2(1−e) ,
the domain Φα,e(|ξ| < ρ3(α)) is properly contained in the limacon domain and

Φα,e(∂Dρ3(α)) ∩ ∂Ω` = ∅.
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(a) α = −1/(e− 1) (b) α =
(
3− 2(e−

√
2)
)
/(2(1− e))

�

Figure 5. Non-sharpness of ρ3(α).

Theorem 2.7. For the families S∗RL and S∗C we have:
(i) R` (S∗RL) = ρRL := 1

158
(
65 + 63

√
2
)
≈ 0.975288,

(ii) R` (S∗C) = ρc := 1
2

(√
1 + 6

√
2− 2

)
≈ 0.539909.

The radius constant in (i) is best possible while as the constant in (ii) can be
improved (see Figure 6).

Proof. (i) Let f ∈ S∗RL. Then Lf (ξ) ≺ ΦRL(ξ), where ΦRL(ξ) is defined in (3).
Thus, for |ξ| = r < 1, we have

|Lf (ξ)− 1| ≤

∣∣∣∣∣√2− (
√

2− 1)
√

1− ξ
1 + 2(

√
2− 1)ξ

− 1

∣∣∣∣∣
≤ 1−

(
√

2− (
√

2− 1)
√

1 + r

1− 2(
√

2− 1)r

)
.

In view of Lemma 2.1, the above disk lies within the region Ω` if

1−
(
√

2− (
√

2− 1)
√

1 + r

1− 2(
√

2− 1)r

)
≤
√

2− 1
2 ,

or equivalently, if r ≤ ρRL. The result is sharp for the function fRL ∈ S∗RL
given by

fRL(ξ) = ξ

√1− ξ +
√

1 + 2(
√

2− 1)ξ
2

2
√

2−2

× exp
(√

2
(√

2− 1
)

tan−1 (Ψ(ξ))
)
,
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where

Ψ(ξ) =

√
2
(√

2− 1
)(√

2
(√

2− 1
)
ξ + 1−

√
1− ξ

)
2
(√

2− 1
)√

1− ξ +
√

2
(√

2− 1
)
ξ + 1

.

Further, LfRL (∂DρRL) ∩ ∂Ω` = {3/2−
√

2}.
(ii) f ∈ S∗C implies Lf (ξ) ≺ 1 + 4ξ/3 + 2ξ2/3, which further gives

|Lf (ξ)− 1| ≤ 2
(
r2 + 2r

)
/3, |ξ| = r.

Applying Lemma 2.1, we observe that f ∈ S∗` if 2
(
r2 + 2r

)
/3 ≤

√
2− 1/2, or,

if r ≤ ρc. For ΦC(ξ) = 1 + 4ξ/3 + 2ξ2/3, we have

ΦC(ρc) = 1
2 +
√

2 < 3
2 +
√

2 = Φ`(1).

Therefore, the domain ΦC(|ξ| < ρc) is properly contained in the domain
bounded by the limacon curve (4). This proves that the radius constant ρc
is not sharp and hence can be improved further. �

(a) Sharpness of ρRL (b) Non-sharpness of ρc

Figure 6
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[16] J. Sokó l, Radius problems in the class S L ∗, Appl. Math. Comput. 214 (2009), no. 2,
569–573. https://doi.org/10.1016/j.amc.2009.04.031
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