
J. Korean Math. Soc. 54 (2017), No. 1, pp. 267–280
https://doi.org/10.4134/JKMS.j150720
pISSN: 0304-9914 / eISSN: 2234-3008

ANALYTIC AND GEOMETRIC PROPERTIES OF OPEN

DOOR FUNCTIONS

Ming Li and Toshiyuki Sugawa

Abstract. In this paper, we study analytic and geometric properties of
the solution q(z) to the differential equation q(z) + zq′(z)/q(z) = h(z)
with the initial condition q(0) = 1 for a given analytic function h(z) on
the unit disk |z| < 1 in the complex plane with h(0) = 1. In particular,
we investigate the possible largest constant c > 0 such that the condition
|Im [zf ′′(z)/f ′(z)]| < c on |z| < 1 implies starlikeness of an analytic
function f(z) on |z| < 1 with f(0) = f ′(0) − 1 = 0.

1. Introduction

We denote by A the class of holomorphic functions on the unit disk D = {z :
|z| < 1} of the complex plane C. Let A0 denote the subclass of A consisting of
functions p with p(0) = 1. Let A1 be the class of functions of the form zp(z) for
p ∈ A0. In other words, f ∈ A1 if and only if f ∈ A and f(0) = f ′(0)− 1 = 0.
We say that a function f ∈ A is subordinate to another g ∈ A and write f ≺ g

or f(z) ≺ g(z) if f = g ◦ω for a function ω ∈ A such that ω(0) = 0 and |ω| < 1.
When g is univalent, f ≺ g precisely when f(0) = g(0) and f(D) ⊂ g(D).

The set of functions q ∈ A0 with Re q > 0 is called the Carathéodory class
and will be denoted by P . It is well recognized that the function q∗(z) =
(1 + z)/(1 − z) (or its rotation q∗(e

iθz)) maps the unit disk univalently onto
the right half-plane and is extremal in many problems. A function f ∈ A1 is
called starlike if f maps D univalently onto a starlike domain with respect to
the origin. Likewise, a function f ∈ A1 is called convex if f maps D univalently
onto a convex domain. We denote by S∗ andK the classes of starlike and convex
functions, respectively. It is well known that f ∈ A1 is starlike precisely when
q(z) = ψf (z) := zf ′(z)/f(z) belongs to P and that f ∈ A1 is convex precisely
when h(z) = ϕf (z) := 1 + zf ′′(z)/f ′(z) belongs to P (see, for instance, [1]).
Note here the relation h(z) = q(z) + zq′(z)/q(z). We also note that f(z) is
convex if and only if zf ′(z) is starlike for f ∈ A1. For a given h ∈ A0, we
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always find a function f ∈ A1 with 1 + zf ′′/f ′ = h. Indeed, by integrating the
relation (log f ′)′ = f ′′/f ′ = (h− 1)/z, we obtain

(1.1) f ′(z) = exp

(
∫ z

0

h(t)− 1

t
dt

)

.

By integrating the above, we get the desired f ∈ A1. Similarly, replacing f ′(z)
by f(z)/z in (1.1), we obtain a representation of f ∈ A1 satisfying zf ′/f = h.

It is obvious that a convex function is starlike. This means analytically that
h = q + zq′/q ∈ P implies q ∈ P for q ∈ A0. In other words, q + zq′/q ≺ q∗
implies q ≺ q∗.

One can observe that the function

h∗(z) := q∗(z) +
zq′∗(z)

q∗(z)
=

1 + z

1− z
+

2z

1− z2
=

1 + 4z + z2

1− z2

maps the unit disk onto the complex plane C slit along the two half-lines
±iy, y ≥

√
3. The following was proved by Mocanu [8] and later extended by

Miller and Mocanu [5] (see also [6]).

Theorem A (Open Door Lemma). Suppose that a function q ∈ A0 satisfies

the subordination condition

q(z) +
zq′(z)

q(z)
≺ h∗(z) = q∗(z) +

zq′∗(z)

q∗(z)
.

Then q(z) ≺ q∗(z).

In particular, if a function f ∈ A1 satisfies the subordination 1 + zf ′′/f ′ ≺
h∗, then f is starlike. Since the slit domain h∗(D) contains the parallel strip

|Imw| <
√
3, we obtain the following result as a corollary.

Corollary 1.1. If a function f ∈ A1 satisfies the condition
∣

∣

∣

∣

Im

[

zf ′′(z)

f ′(z)

]∣

∣

∣

∣

<
√
3, z ∈ D,

then f is starlike.

We recall a notion of strong starlikeness. A function f ∈ A1 is called strongly

starlike of order α for an 0 < α if |arg [zf ′(z)/f(z)]| < πα/2 for z ∈ D. We
denote by S∗

α the class of strongly starlike functions in A1 of order α. Obviously,
we have S∗

1 = S∗. For geometric characterizations of strongly starlike functions,
see [10] and references therein.

In the present paper, we try to find or estimate the best possible constant
γ > 0 such that the condition |Im [zf ′′(z)/f ′(z)]| < γ implies f ∈ S∗

α. More
precisely, the number is defined as γ(S∗

α), where

γ(F) = sup
{

γ ≥ 0 : ϕf (D) ⊂Wγ implies f ∈ F for f ∈ A1

}

for a subset F of A1 and

Wγ = {w ∈ C : |Imw| < γ}
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is a parallel strip of width 2γ. We recall that ϕf = 1 + zf ′′/f ′.

We will show the following estimates of γ(S∗
α). See also Figure 3 below for

the graphs of γ(S∗
α) the upper and lower bounds.

Theorem 1.2. Let 0 < α < 1. Then

√
3α <

α+ (1 + α) sin(πα/2)
√

1 + 2 sin(πα/2)
< γ(S∗

α) <

√
3πα

√
3 + α

.

We remark that a similar (but not better) result can be found at [2, Theorem
1.6]. Mocanu [7, Corollary 1.1] showed that γ(S∗

π/4) ≥ 1. Our estimate gives

γ(S∗
π/4) > (2 + 3

√
2)/4

√

1 +
√
2 = 1.0044319 · · · . Note that the lower bound

in this theorem tends to
√
3 as α→ 1, which agrees with Corollary 1.1. When

α = 1, we can slightly improve the upper bound in the last theorem.

Theorem 1.3.
√
3 ≤ γ(S∗) < 2.5.

Though it is difficult to compute the exact value of γ(S∗), the next result
gives us a way to compute it numerically.

Theorem 1.4. Let θc = 2 arctan(e2/c) ∈ (π/2, π) for c > 0. Let F (c) = v(1)
for c ≥ 0, where v(t) is the solution to the initial value problem of ordinary

differential equation

v(t) +
tv′(t)

v(t)
= 1 +

c

2
log

1 + teiθc

1− teiθc
, v(0) = 1.

Then

γ(S∗) = πc0/4,

where c0 is the smallest positive number such that ReF (c0) = 0.

We remark that F (c) = qc(e
iθc), where qc is given in Section 3.

The organization of the present paper is as follows. In Section 2, we in-
vestigate geometric properties of the solution q to the differential equation
q + zq′/q = h for a given h ∈ A0. We believe that our observation will be
helpful for other kinds of problems concerning the subordination of ψf and ϕf .

In order to estimate the quantity γ(S∗
α), we study in Section 3 the extremal

case when h = hc = 1 + c · arctanh , which maps D onto the parallel strip
Wπc/4 for c > 0. We will show that the solution qc to the differential equa-
tion qc + zq′c/qc = hc maps D univalently onto a smooth Jordan domain if c
is not very large (Theorem 3.1). Lemma 3.2 will describe γ(S∗

α) in terms of
the above solutions qc. Section 4 is devoted to the proof of the main theorems.
The last section gives concluding remarks on numerical experiments. By using
Mathematica, we can generate a graph of the function α 7→ γ(S∗

α) and some
approximation of the value γ(S∗) though there is no rigorous error estimate for
the present experiments.
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2. Some observations of Open Door Lemma

Throughout the present paper, for simplicity, we consider only functions in
A0 for the Open Door Lemma. For the most general version of Open Door
Lemma, the reader should consult the monograph [6] by Miller and Mocanu.

The following result is contained in Theorems 3.2i and 3.4b of [6, p. 97,
p. 124].

Lemma 2.1. Let h ∈ A0 map D univalently onto a convex domain. Suppose

that the differential equation

(2.2) q(z) +
zq′(z)

q(z)
= h(z)

has an analytic solution q with Re q > 0. Then q is univalent and q ≺ h. If

p ∈ A0 satisfies

(2.3) p(z) +
zp′(z)

p(z)
≺ h(z),

then p ≺ q and q is the best dominant.

The lemma immediately yields the following corollary.

Corollary 2.2. Let h ∈ A0 be a univalent function with convex image con-

taining the parallel strip Wγ . If (2.2) has an analytic solution q with Re q > 0,
then γ(S∗) ≥ γ.

It is, in general, not easy to analyse the solution to the differential equation
(2.2) for a given h. Therefore, practically, we start from a function q with
Re q > 0 and look at the image of D under the function h defined by (2.2). If it
is a convex domain containing Wγ , then the last corollary implies γ(S∗) ≥ γ.

Therefore, to make a suitable choice of q, it is helpful to observe the boundary
behaviour of the solution to the equation (2.2) for the targeted h.

For q ∈ A0 and θ ∈ R, we define β(θ) = β(θ; q) (modulo 2π rigorously
speaking) by

β(θ) = lim
z→eiθ

[

arg q′(z) + θ +
π

2

]

if it exists. When q and q′ extend continuously to {z ∈ D : |z − eiθ| < δ} for
some δ > 0 and q′(eiθ) 6= 0, one has

lim
t→θ

arg
d

dt
q(eit) = lim

t→θ

[

arg q′(eit) + t+
π

2

]

= β(θ).

Thus, β(θ) means the argument of a tangent vector of the boundary curve
q(eit) at t = θ. Even if the above limit does not exist, the following limits may
exist:

β±(θ) = lim
t→θ±

arg
d

dt
q(eit) = lim

t→θ±

[

arg q′(eit) + t+
π

2

]

for each signature. Assume that q maps D univalently onto a Jordan domain
Ω. Ω is said to be smooth if β can be chosen as a continuous function on R.
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This means that Ω has continuously varying tangent at each boundary point.
For further properties of β(θ), see [9, §3.2].

We summarise properties of the solutions to (2.2).

Proposition 2.3. Let h ∈ A0 and take f ∈ A1 so that (1.1) is fulfilled. Then

a unique meromorphic solution q to the differential equation (2.2) with q(0) 6= 0
is given by q(z) = zf ′(z)/f(z). If the solution q has a pole at z = z0, then its

order is 1 and its residue is z0.

Suppose that h(z) = O(|z − ζ|−α) as z tends to a boundary point ζ =
eiθ ∈ ∂D in D for a constant α < 1. Then the limits limz→ζ f

′(z) =: f ′(ζ)
and limz→ζ f(z) =: f(ζ) exist and f ′(ζ) 6= 0. If, in addition, f(ζ) 6= 0, then
limz→ζ q(z) =: q(ζ) exists and q(ζ) 6= 0. Moreover the following hold.

(i) Suppose that the finite limit limz→ζ h(z) =: h(ζ) exists and f(ζ) 6= 0.
Then, q(z) = q(ζ)[1+ ζ̄(h(ζ)− q(ζ)+ o(1))(z− ζ)] as z → ζ. Moreover,

if q(ζ) 6= h(ζ), then

β(θ) = arg q(ζ) + arg [h(ζ)− q(ζ)] +
π

2
.

(ii) If h(z) = (A + o(1))(ζ − z)−α as z → ζ in D for constants A 6= 0 and

0 < α < 1, then q(z) = q(ζ)[1 − ζ̄A
1−α

(ζ − z)1−α] as z → ζ.

β±(θ) = arg q(ζ) + argA− αθ + (1± α)
π

2
.

(iii) If h(z) = −(A + o(1)) log(ζ − z) as z → ζ in D for a constant A 6= 0,
then q(z) = q(ζ)[1 + (ζ̄A+ o(1))(z − ζ) log(z − ζ)] and

β(θ) = arg q(ζ) + argA+
π

2
.

Remark. In the limit above, z → ζ means that z approaches ζ in D without
any restriction such as radial or non-tangential limits.

Proof. Observe first that any analytic function q with q(0) 6= 0 satisfying (2.2)
on D must have the initial value q(0) = 1 because of h(0) = 1. We now show
that (2.2) has a meromorphic solution q on D. Since D is simply connected, an
analytic function f on D can be defined uniquely by (1.1) and the condition
f(0) = 0. Note that f ′(z) 6= 0 for z ∈ D. Therefore, q(z) = zf ′(z)/f(z) is a
meromorphic solution to (2.2) on D with at most simple poles.

It is easy to show existence of the limits when z → ζ in D. (See the proof of
(ii) to get basic ideas to do that.) Hence, we have shown the first assertion in
the proposition.

We show now assertion (i). As for the formula of β(θ), one needs only to
take the argument of both sides of the identity

(2.4) zq′(z) = q(z)(h(z)− q(z))

and put z = ζ = eiθ.
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We next show assertion (ii). Suppose that h(z) = (A + o(1))(ζ − z)−α as
z → ζ in D for α ∈ R with 0 < α < 1. (We will surpress the description “in D”
in the rest of the proof for brevity.) Since 0 < α < 1, we have

h(z)− 1

z
=

(

A

ζ
+ o(1)

)

(ζ − z)−α, z → ζ,

and the limit

C = lim
z→ζ

∫ z

0

h(t)− 1

t
dt =

∫ ζ

0

h(t)− 1

t
dt

exists. Thus, in view of (1.1), one obtains

e−Cf ′(z) = exp

[
∫ z

ζ

h(t)− 1

t
dt

]

= exp
[

(−K + o(1)) (ζ − z)1−α
]

= 1 + (−K + o(1))(ζ − z)1−α

as z → ζ, whereK = ζ̄A/(1−α). In particular, the limits limz→ζ f
′(z) = eC =:

f ′(ζ), limz→ζ f(z) =: f(ζ) exist and

f(z) = f(ζ) + f ′(ζ)
[

(z − ζ) + ( K
2−α

+ o(1))(ζ − z)2−α
]

, z → ζ.

If f(ζ) 6= 0, then f(z)/f(ζ) = 1 + q(ζ)(z − ζ)/ζ +O(|z − ζ|2−α) so that

q(z)

q(ζ)
= 1 + (−K + o(1))(ζ − z)1−α +

1− q(ζ)

ζ
(z − ζ)

as z → ζ. Thus the first part of (ii) has been shown.
To show the relation for β±(θ) in (ii), we note that arg [(ζ−z)−1] → −θ±π/2

as t→ θ± for ζ = eiθ. Since |h(z)| → +∞ as z → ζ in this case, (2.4) yields

β±(θ) = arg q(ζ) + lim
t→θ±

arg [h(eit)− q(eit)] +
π

2

= arg q(ζ) + lim
t→θ±

argh(eit) +
π

2

= arg q(ζ) + argA+ α
(

−θ ±
π

2

)

+
π

2
.

Finally, we show assertion (iii). We can compute in the same way as in (ii)
except for the integrals:
∫ z

ζ

log(t− ζ)dt = (z − ζ)[log(z − ζ)− 1] = (1 + o(1))(z − ζ) log(z − ζ) = o(1)

and
∫ z

ζ

(t− ζ) log(t− ζ)dt =
(z − ζ)2

2
[log(z − ζ)− 1/2] = O

(

(z − ζ)2 log(z − ζ)
)

as z → ζ. Thus the conclusion follows. �
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In the last proposition, the condition in (ii) means roughly that z = ζ

corresponds via the function h(z) to the tip at infinity of a sector with opening
angle πα. It should also be noted that assertion (iii) can be regarded as a
limiting case of assertion (ii).

3. An extremal case

For c > 0, we define

hc(z) = 1 + c arctanh z = 1 +
c

2
log

1 + z

1− z
= 1 + c

∞
∑

n=0

z2n+1

2n+ 1
, z ∈ D,

and let qc be the solution to the initial value problem of the ODE:

(3.5) qc(z) +
zq′c(z)

qc(z)
= hc(z), z ∈ D, qc(0) = 1.

Note that hc maps the unit disk D onto the parallel stripWπc/4 = {w : |Imw| <
πc/4}. Let fc ∈ A1 be the solution to the equation ϕfc = hc. Namely, f = fc
can be determined by (1.1) with h = hc. Then, qc(z) = zf ′

c(z)/fc(z). We
compute

∫ z

0

hc(t)− 1

t
dt = cχ2(z),

where

χ2(z) =
1

2
[Li2(z)− Li2(−z)] =

∞
∑

n=0

z2n+1

(2n+ 1)2

is called Legendre’s chi-function (see [3, §1.8]) and Li2(z) is the dilogarithm
function. Note that

χ2(1) =

∞
∑

n=0

1

(2n+ 1)2
=
π2

8
< +∞.

Therefore, by (1.1), fc is expressed by

fc(z) =

∫ z

0

exp
[

cχ2(t)
]

dt = z

∫ 1

0

exp
[

cχ2(tz)
]

dt.

Hence,

(3.6)
1

qc(z)
=

fc(z)

zf ′
c(z)

=

∫ 1

0

exp c
[

χ2(tz)− χ2(z)
]

dt.

We define two numbers c1 and c∗ as the largest possible ones with the prop-
erties

0 < c < c1 ⇒ Re qc > 0 on D,

0 < c < c∗ ⇒ qc ≺ hc.
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By Corollary 1.1 and Lemma 2.1, we observe that the following inequalities
hold:

4
√
3

π
≤ c1 ≤ c∗.

It is also easy to show that Re qc1 > 0 and qc
∗

≺ hc
∗

. We are now able to show
the following.

Theorem 3.1. Let 0 < c ≤ c∗. Then the solution qc to (3.5) is a non-vanishing

analytic function on the unit disk D and satisfies the relation qc(z) = qc(z̄) and
the inequalities

0 < qc(−1) < |qc(z)| < qc(1) < +∞, z ∈ D.

If, in addition, c ≤ c1, then qc is univalent on D and the image qc(D) is a

smooth Jordan domain in the sense that its boundary has continuously varying

tangent.

Proof. By Proposition 2.3, we first see that qc extends meromorphically to
D\{1,−1} and that qc(z) has finite limits qc(±1) as z → ±1 in D. The symmetry
property in the real axis is immediate from uniqueness of the initial value
problem for ODE.

We now prove the inequalities in the assertion. In view of the expression
(3.6), the reciprocal 1/qc is analytic on D. We now look at the function p(x) =
1/qc(x) for −1 < x < 1. Since

χ′
2(x) − tχ′

2(tx) =

∞
∑

n=0

1− t2n+1

2n+ 1
x2n > 0

for −1 < x < 1 and 0 < t < 1, one obtains p′(x) < 0, which implies that qc(x)
is increasing in −1 < x < 1.

Let u(θ) = R(θ)eiΘ(θ) = qc(e
iθ) with Θ(0) = 0 for 0 ≤ θ ≤ π. Then, we

deduce from (3.5) that

qc(e
iθ) +

eiθq′c(e
iθ)

qc(eiθ)
= u(θ) +

u′(θ)

iu(θ)
= R(θ)eiΘ(θ) +

R′(θ)

iR(θ)
+ Θ′(θ)

=
c

2
log

1 + eiθ

1− eiθ
+ 1 =

c

2

(

log cot
θ

2
+
πi

2

)

+ 1

for 0 < θ < π. Taking the real and the imaginary parts of the above formula,
we get

R(θ) cosΘ(θ) + Θ′(θ) =
c

2
log cot

θ

2
+ 1,(3.7)

R(θ) sinΘ(θ)−
R′(θ)

R(θ)
=
cπ

4
.(3.8)

Since qc ≺ hc, we note that Im qc(e
iθ) = R(θ) sinΘ(θ) ≤ cπ/4. Hence, R′(θ) ≤

0, which means that R(θ) is non-increasing in 0 < θ < π. In particular,
qc(−1) = R(π) ≤ R(θ) ≤ R(0) = qc(1). The same is true for −π < θ < 0
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by the symmetry. The maximum modulus principle now implies the desired
inequalities. In particular, we note that qc is bounded on D.

Now we assume that 0 < c ≤ c1. Then Lemma 2.1 implies that qc is
univalent. By Proposition 2.3, we see that qc meromorphically continues to
D \ {1,−1}. Since qc is bounded, there is no pole of qc on D. Hence, qc
is analytic on D \ {1,−1}. We next show that R(θ) is strictly decreasing in
0 < θ < π. If not, since R(θ) is non-increasing, there is an interval I = (a, b)
with 0 < a < b < π such that R(θ) is constant, say R0, on I. Then (3.8) yields
that R0 sinΘ(θ) = cπ/4 for θ ∈ I, which implies that Θ is also constant on I.
By the identity theorem, qc must be constant, which is a contradiction. We
have proved that R(θ) is strictly decreasing in 0 < θ < π. By symmetry, the
same is true for R(−θ) with 0 < θ < π.

We next show that q′c(e
iθ) 6= 0 for 0 < θ < π. If not, q′c(ζ0) = 0 for some ζ0 =

eiθ0 , 0 < θ0 < π, which leads to q(ζ0) = h(ζ0) by (3.5). Since qc(z) = qc(ζ0) +
ψ(z)k near z = ζ0 for an analytic function ψ(z) with ψ(ζ0) = 0, ψ′(ζ0) 6= 0 and
an integer k ≥ 2, we can see that qc(D) covers a small sector with a tip at qc(ζ0)
and opening angle is nearly kπ ≥ 2π. This, however, contradicts the fact that
qc(D) is contained in hc(D) whose boundary contains a line passing through
hc(ζ0) = qc(ζ0). By symmetry, we now see that q′c(ζ) 6= 0 for ζ ∈ ∂D \ {1,−1}.

Since qc maps the real interval (−1, 1) into the positive real axis, the upper
(lower) half-disk is mapped into the upper (lower) half-plane by qc. Therefore,
we conclude that qc(D) is a Jordan domain and qc(∂D \ {1,−1}) is real ana-
lytically smooth. By Proposition 2.3(iii), the curve qc(∂D) has continuously
varying tangent at ζ = ±1 as well. Thus we get the last conclusion. �

We define cα for 0 < α ≤ 1 as the largest possible number so that

0 < c < cα ⇒ |arg qc| <
πα

2
on D.

Obviously, when α = 1 this number agrees with c1 defined before Theorem 3.1.
The following result reduces the computation of γ(S∗

α) to the investigation of
mapping properties of the function qc.

Lemma 3.2. For 0 < α ≤ 1, the relation γ(S∗
α) = πcα/4 holds.

Proof. Let γ = γ(S∗
α). Then |Im [zf ′′

c /f
′
c]| = |Imhc| < πc/4 ≤ γ for c ≤ 4γ/π.

By the definition of the number γ(S∗
α), we obtain fc ∈ S∗

α, which means that
|arg qc| < πα/2. Therefore, we have cα ≥ 4γ(S∗

α)/π.
Next assume that |Im [zf ′′/f ′]| < πcα/4. Then ϕf = 1 + zf ′′/f ′ ≺ hcα .

We note that cα ≤ c1 ≤ c∗. By Theorem 3.1 together with Lemma 2.1, we
see that qf = zf ′/f ≺ qcα . Since |arg qcα | < πα/2, we have f ∈ S∗

α. Hence,
γ(S∗

α) ≥ πcα/4. We now conclude that γ(S∗
α) = πcα/4. �

4. Proof of main results

In order to obtain upper bounds for cα, we use the Carathéodory-Toeplitz
theorem (see, for instance, [11, Theorem IV.22]).
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Lemma 4.1. Let p(z) = 1 + b1z + b2z
2 + · · · be a formal power series. Then,

p represents an analytic function on D with Re p > 0 if and only if

∆n(p) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2 b1 b2 · · · bn
b1 2 b1 · · · bn−1

b2 b1 2 · · · bn−2

...
...

...
. . .

...

bn bn−1 bn−2 · · · 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ 0

for all n ≥ 1.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Expand the function qc(z) in the form

qc(z) = 1 +

∞
∑

n=1

bnz
n = 1 + b1z + b2z

2 + · · · .

Then, by comparing the series expansion of the both sides of (3.5) (or, alter-
natively, via the formula (1.1), by using the relation qc(z) = zf ′

c(z)/fc(z)), we
obtain

qc(z) = 1 +
c

2
z +

c2

12
z2 +

c

12
z3 +

c2(24− c2)

720
z4 +

c(5c2 + 72)

2160
z5

+
c2(c4 − 24c2 + 522)

30240
z6 +

c(1620 + 189c2 − 7c4)

90720
z7 + · · · .

By using computer algebra, we get

∆6(qc) = 2−21 · 3−14 · 5−6 · 7−2 ·
(

9c12 − 3168c10 + 117032c8 − 5676096c6

+456371280c4− 10334615040c2 + 62705664000
)

·
(

9c12 − 2328c10

+209872c8 − 9890976c6 + 266580720c4 − 3412575360c2

+15676416000)

and find that its minimal positive root ρ6 is approximately 3.1735. Hence, by
Lemma 3.2, γ(S∗) = πc1/4 < πρ6/4 < 2.4925 < 2.5.

The first inequality in Theorem 1.3 follows from Corollary 1.1. �

We may increase the number n = 6 when applying Lemma 4.1 to obtain a
better upper bound. See the last section for such attempts.

Proof of Theorem 1.2. Let 0 < α < 1. For the function q(z) = [(1+z)/(1−z)]α,
Mocanu [7] considered the corresponding open door function h(z) = q(z) +
zq′(z)/q(z). The authors showed in [4, Lemma 3.3] that the image h(D) contains
a parallel strip of the form Wγ for some γ > g(α), where

g(α) =
1

2

[

(1 + α)
√

1 + 2 sin(πα/2)−
1− α

√

1 + 2 sin(πα/2)

]
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=
α+ (1 + α) sin(πα/2)
√

1 + 2 sin(πα/2)
.

The Mocanu theorem [7, Theorem 2] (see also [4]), which is a version of the
Open Door Lemma, implies that γ(S∗

α) ≥ γ > g(α).

We next show that g(α) >
√
3α. Since

g′′(α) = π
8 cos(απ/2) sin(απ/2)− (1 + α)π sin2(απ/2)− 2π sin(απ/2)− (1 + α)π

8(1 + sin(απ/2))3/2

− (1− α)
3π2 cos2(απ/2)

8(1 + 2 sin(απ/2))5/2

≤
π(8 cos(απ/2)− 3π) sin(απ/2)

8(1 + sin(απ/2))3/2
− (1− α)

3π2 cos2(απ/2)

8(1 + 2 sin(απ/2))5/2
,

it is easy to see that g′′(α) < 0 for 0 < α < 1, in other words, g(x) is strictly

concave. Hence, we have the inequality g(α) > g(0) + (g(1) − g(0))α =
√
3α

for 0 < α < 1.
Finally, we consider the upper estimate. Let c ≤ cα. Then

p(z) = [qc(z)]
1/α = 1 +

c

2α
z +

(3− α)c2

24α2
z2 +

4α2c+ (1− α)c3

48a3
z3 + · · ·

has positive real part on D. By Lemma 4.1, ∆2(p) ≥ 0 is necessary for p ∈ P .
A straightforward computation yields

∆2(p) =
(9− α2)c4 − 288α2c2 + 2304α4

288α4

=
{(3 + α)c2 − 48α2}{(3− α)c2 − 48α2}

288α4
.

By solving the inequality ∆2(p) ≥ 0, we obtain cα ≤ 4
√
3α/

√
3 + α. Now

Lemma 3.2 gives the desired upper bound. �

Proof of Theorem 1.4. Recall that c1 is the largest possible number such that
Re qc > 0 on D for 0 < c < c1. Theorem 3.1 tells us that qc1 is a bounded
univalent function on D and that the boundary of D = qc1(D) does not touch
the origin. Then the argument function Θ(θ) defined in the proof of Theorem
3.1 with c = c1 satisfies that Θ(0) = Θ(π) = 0 and 0 < Θ(θ) ≤ π/2 for 0 < θ <

π. By maximality, Θ(θ0) = π/2 for some 0 < θ0 < π. Since π/2 is the possible
largest value of Θ(θ), we have Θ′(θ0) = 0. Then, we substitute these into (3.7)
to get (c1/2) log cot(θ0/2) + 1 = 0, equivalently, θ0 = 2 arctan(e2/c1) = θc1 .

Hence, ReF (c1) = Re qc1(e
iθ0) = Re [R(θ0)e

iΘ(θ0)] = 0. For 0 < c < c1, we
have ReF (c) = Re qc(e

iθc) > 0. Thus we conclude that c1 is the smallest
positive number such that ReF (c1) = 0, that is to say, c1 = c0. �
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5. Numerical experiments

By using Mathematica Ver. 10, we can evaluate the right-hand side of (3.6).
In this way, we can compute the values of qc(z) numerically. In Figure 2,
we exhibit the graph of the function c 7→ ReF (c), where F (c) is given in
Theorem 1.4. Numerical experiments give us ReF (3.02756) ≈ 1.06 × 10−6

and ReF (3.02757) ≈ −2.80× 10−6. Thus, if the numerical computations were
correct, we would have c0 = c1 ≈ 3.0276. The image of D under the mapping
qc1 is generated in this way (see Figure 1).

In the same way, based on Lemma 3.2, we can draw a graph of the function
α 7→ γ(S∗

α) together with the upper bound
√
3πα/

√
3 + α and the lower bound

g(α) given in Theorem 1.2, see Figure 3. The image looks to have a corner
at qc1(±1). However, if we magnify the neighbourhood of these points large
enough, it should look smooth according to Theorem 3.1.

0 5

-2

-1

1

2

Figure 1. Conformal mapping of D under qc1 .
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1.0

Figure 2. The graph of ReF (c).
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Figure 3. The graphs of γ(S∗
α) (solid line) g(α) (dashed line)

and
√
3πα/

√
3 + α (dotted line).

In the previous section, we obtained upper bounds for c1 based on the
Carathéodory-Teoplitz theorem. With the help of computer algebra, we can
go further. We can compute ∆n(qc) exactly as a polynomial in c with rational
coefficients for a small enough n and find numerically the smallest positive root
ρn of the polynomial ∆n(qc) in c. In this way, Table 1 can be made with the
aid of Mathematica. Thus the upper bound 2.5 in Theorem 1.3 can be reduced
to some extent. Some results are depicted in Table 1. We see that ρ30 is close
enough to the expected value c1 ≈ 3.02756.

Table 1. Approximated values of ρn, γn = πρn/4 and ∆γn =
γn − γn−1.

n ρn γn −∆γn
1 4.00000000 3.14159265
2 3.46410162 2.72069905 0.42089400
3 3.36499696 2.64286243 0.07783660
4 3.33586037 2.61997861 0.02288382
5 3.21295295 2.52344735 0.09653126
6 3.17351296 2.49247125 0.03097610
7 3.17032183 2.48996494 0.00250631
8 3.13275982 2.46046381 0.02950113
9 3.11076636 2.44319018 0.01727363
10 3.10609706 2.43952292 0.00366726
15 3.06686241 2.40870810 0.00907899
20 3.04388463 2.39066140 0.00107182
30 3.04026630 2.38781957 0.00014363
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