• Title/Summary/Keyword: F0 Range

Search Result 1,444, Processing Time 0.032 seconds

MICROLEAKAGE AND WATER STABILITY OF RESIN CEMENTS

  • Choi Sun-Young;Lee Sun-Hyung;Yang Jae-Ho;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.369-378
    • /
    • 2003
  • Statement of Problem: Recently, resin cements have become more widely used and have been accepted as prominent luting cements. Current resin cements exhibit less microleakage than conventional luting cements. However, the constant contact with water and exposure to occlusal forces increase microleakage even in resin cements inevitably. Most bonding resins have been modified to contain a hydrophilic resin such as 2-hydroxyethylmethacrylate (HEMA) to overcome some of the problems associated with the hydrophobic nature of bonding resins. By virtue of these modifications, bonding resins absorb a significant amount of water, and there may also be significant stresses at bonding interfaces, which may adversely affect the longevity of restorations. Therefore the reinforcement of water stability of resin cement is indispensable in future study. Purpose: This study was conducted to examine the influence of water retention on microleakage of two resin cements over the period of 6 months. Materials and Methods: 32 extracted human teeth were used to test the microleakage of a single full veneer crown. Two resin cements with different components and adhesive properties - Panavia F (Kuraray Co., Osaka, Japan) and Super-Bond C&B (Sun Medical Co., Kyoto, Japan)- were investigated. The storage medium was the physiological saline solution changed every week for 1 month, 3 months, and 6 months. One group was tested after storage for 1 day. At the end of the each storage period, all specimens were exposed to thermocycling from $5^{\circ}C$ to $55^{\circ}C$ of 500 cycles and chewing simulation of 50,000 cycles, and then stained with 50% silver nitrate solution. The linear penetration of microleakage was measured using a stereoscopic microscope at ${\times}40$ magnification and a digital traveling micrometer with an accuracy of ${\pm}3{\mu}m$. Values were analyzed using two-way ANOVA test, Duncan's multiple range tests (DMRT). Results : Statistically significant difference of microleakage was shown in the 3-month group compared with the1-day or 1-month group in both systems (p<0.05) and there were statistically significant differences in microleakage between the 3-month group and the 6-month group in both systems (p<0.05). The two systems showed different tendency in the course of increased microleakage during 3 months. In Panavia F, microleakage increased slowly throughout the periods. In Super-Bond C&B, there was no significant increase of microleakage for 1 month, but there was statistically significant increase of microleakage for the next 2 months. For the mean microleakage for each period, in the 3-month group, microleakage of Super-Bond C&B was significantly greater than that of Panavia F. On the other hand, in the 6-month group, microleakage of Panavia F was significantly greater than that of Super-Bond C&B (p<0.05). Conclusion: Within the limitation of this study, water retention of two different bonding systems influence microleakage of resin cements. Further studies with the longer observation periods in viro are required in order to investigate water stability and the bonding durability of the resin cement. CLINICAL IMPLICATIONS Microleakage at the Cement-tooth interfaces did not necessarily result in the failure of the crowns. But it is considered to be a major factor influening the longerity of restorations. Further clinical approaches for decreasing the amount of microleakage are required.

Thermoluminescence Properties of Elpasolite Scintillation Single Crystal (엘파소라이트 섬광형 단결정의 열형광 특성)

  • Kim, Sung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.492-497
    • /
    • 2012
  • In this paper, we determined the scintillation and thermoluminescence properties of $Cs_2NaCeBr_6$ elpasolite scintillation crystal. The emission spectrum of $Cs_2NaCeBr_6$ is located in the range of 300 ~ 450 nm, peaking at 377 nm and 400 nm. And, the fluorescence decay time of the crystal is composed two components. The fast component is 140 ns (94%), and the slow component is 880 ns (6%) of the crystal. The after-glow is caused by the electron and hole traps in the crystal lattices. We determined thermoluminescence parameters of the traps in the crystal. The determined activation energy(E), kinetic order and frequency factor of the traps are 0.67 eV, 1.71 and $2.51{\times}10^8s^{-1}$ respectively. In this crystal, re-combination rate is more dominant phenomenon than the re-trapping rate.

Design of Mesoporous Silica at Low Acid Concentrations in Triblock Copolymer-Butanol-Water Systems

  • Kleitz, Freddy;Kim, Tae-Wan;Ryoo, Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1653-1668
    • /
    • 2005
  • Assembly of hybrid mesophases through the combination of amphiphilic block copolymers, acting as structuredirecting agents, and silicon sources using low acid catalyst concentration regimes is a versatile strategy to produce large quantities of high-quality ordered large-pore mesoporous silicas in a very reproducible manner. Controlling structural and textural properties is proven to be straightforward at low HCl concentrations with the adjustment of synthesis gel composition and the option of adding co-structure-directing molecules. In this account, we illustrate how various types of large-pore mesoporous silica can easily be prepared in high phase purity with tailored pore dimensions and tailored level of framework interconnectivity. Silica mesophases with two-dimensional hexagonal (p6mm) and three-dimensional cubi (Fm$\overline{3}$m, Im$\overline{3}$m and Ia$\overline{3}$d) symmetries are generated in aqueous solution by employing HCl concentrations in the range of 0.1−0.5 M and polyalkylene oxide-based triblock copolymers such as Pluronic P123 $(EO_{20}-PO_{70}-EO_{20})$ and Pluronic F127 $(EO_{106}-PO_{70}-EO_{106})$. Characterizations by powder X-ray diffraction, nitrogen physisorption, and transmission electron microscopy show that the mesoporous materials all possess high specific surface areas, high pore volumes and readily tunable pore diameters in narrow distribution of sizes ranging from 4 to 12 nm. Furthermore, we discuss our recent advances achieved in order to extend widely the phase domains in which single mesostructures are formed. Emphasis is put on the first synthetic product phase diagrams obtained in $SiO_2$-triblock copolymer-BuOH-$H_2O$ systems, with tuning amounts of butanol and silica source correspondingly. It is expected that the extended phase domains will allow designed synthesis of mesoporous silicas with targeted characteristics, offering vast prospects for future applications.

Using High Resolution Ecological Niche Models to Assess the Conservation Status of Dipterocarpus lamellatus and Dipterocarpus ochraceus in Sabah, Malaysia

  • Maycock, Colin R.;Khoo, Eyen;Kettle, Chris J.;Pereira, Joan T.;Sugau, John B.;Nilus, Reuben;Jumian, Jeisin;Burslem, David F.R.P.
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.3
    • /
    • pp.158-169
    • /
    • 2012
  • Sabah has experienced a rapid decline in the extent of forest cover. The precise impact of habitat loss on the conservation status of the plants of Sabah is uncertain. In this study we use the niche modelling algorithm MAXENT to construct preliminary, revised and final ecological niche models for Dipterocarpus lamellatus and Dipterocarpus ochraceus and combined these models with data on current land-use to derive conservation assessments for each species. Preliminary models were based on herbarium data alone. Ground surveys were conducted to evaluate the performance of these preliminary models, and a revised niche model was generated from the combined herbarium and ground survey data. The final model was obtained by constraining the predictions of the revised models by filters. The range overlap between the preliminary and revised models was 0.47 for D. lamellatus and 0.39 for D. ochraceus, suggesting poor agreement between them. There was substantial variation in estimates of habitat loss for D. ochraceus, among the preliminary, revised and constrained models, and this has the potential to lead to incorrect threat assessments. From these estimates of habitat loss, the historic distribution and estimates of population size we determine that both species should be classified as Critically Endangered under IUCN Red List guidelines. Our results suggest that ground-truthing of ecological niche models is essential, especially if the models are being used for conservation decision making.

Design of RFID Passive Tag Antennas in UHF Band (UHF 대역 수동형 RFID 태그 안테나 설계)

  • Cho Chihyun;Choo Hosung;Park Ikmo;Kim Youngkil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.872-882
    • /
    • 2005
  • In this paper, we examined the operating principle of a passive tag antenna for RFID system in UHF band. Based on the study, we proposed a novel RFID tag antenna which adopts the inductively coupled feeding structure to match antenna impedance to a capacitively loaded commercial tag chip. The proposed tag antenna consists of microstrip lines on a thin PET substrate for low-cost fabrication. The detail structure of the tag antenna were optimized using a full electromagnetic wave simulator of IE3D in conjunction with a Pareto genetic algorithm and the size of the tag antenna can be reduced up to kr=0.27($2 cm^2$). We built some sample antennas and measured the antenna characteristics such as a return loss, an efficiency, and radiation patterns. The readable range of the tag antenna with a commercial RFID system showed about 1 to 3 m.

Insights into Tan Spot and Stem Rust Resistance and Susceptibility by Studying the Pre-Green Revolution Global Collection of Wheat

  • Abdullah, Sidrat;Sehgal, Sunish Kumar;Jin, Yue;Turnipseed, Brent;Ali, Shaukat
    • The Plant Pathology Journal
    • /
    • v.33 no.2
    • /
    • pp.125-132
    • /
    • 2017
  • Tan spot (TS), caused by the fungus Pyrenophora tritici-repentis (Died) Drechs, is an important foliar disease of wheat and has become a threat to world wheat production since the 1970s. In this study a globally diverse pre-1940s collection of 247 wheat genotypes was evaluated against Ptr ToxA, P. tritici-repentis race 1, and stem rust to determine if; (i) acquisition of Ptr ToxA by the P. tritici-repentis from Stagonospora nodorum led to increased pathogen virulence or (ii) incorporation of TS susceptibility during development stem rust resistant cultivars led to an increase in TS epidemics globally. Most genotypes were susceptible to stem rust; however, a range of reactions to TS and Ptr ToxA were observed. Four combinations of diseasetoxin reactions were observed among the genotypes; TS susceptible-Ptr ToxA sensitive, TS susceptible-Ptr ToxA insensitive, TS resistant-Ptr ToxA insensitive, and TS resistant-Ptr ToxA toxin sensitive. A weak correlation (r = 0.14 for bread wheat and -0.082 for durum) was observed between stem rust susceptibility and TS resistance. Even though there were no reported epidemics in the pre-1940s, TS sensitive genotypes were widely grown in that period, suggesting that Ptr ToxA may not be an important factor responsible for enhanced prevalence of TS.

Systematic Investigation of the Effects of Macro-elements and Iron on Soybean Plant Response to Fusarium oxysporum Infection

  • Cai, Hongsheng;Tao, Nan;Guo, Changhong
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.398-405
    • /
    • 2020
  • Nutrient manipulation is a promising strategy for controlling plant diseases in sustainable agriculture. Although many studies have investigated the relationships between certain elements and plant diseases, few have comprehensively explored how differing mineral nutrition levels might affect plant-fungal pathogen interactions, namely plant susceptibility and resistance. Here, we systematically explored the effects of the seven mineral elements that plants require in the greatest amounts for normal development on the susceptibility of soybean plants (Glycine max) to Fusarium oxysporum infection in controlled greenhouse conditions. Nitrogen (N) negligibly affected plant susceptibility to infection in the range 4 to 24 mM for both tested soybean cultivars. At relatively high concentrations, phosphorus (P) increased plant susceptibility to infection, which led to severely reduced shoot and root dry weights. Potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), and iron (Fe) induced plant resistance to infection as their concentrations were increased. For K and Ca, moderate concentrations had a positive effect on plant resistance to the pathogen, whereas relatively high doses of either element adversely affected plant growth and promoted disease symptoms. Further experiments were conducted, assessing disease suppression by selected combinations of macro-elements and Fe at screened concentrations, i.e., K (9 mM) plus Fe (0.2 mM), and S (4 mM) plus Fe (0.2 mM). The disease index was significantly reduced by the combination of K plus Fe. In conclusion, this systematic investigation of soybean plant responses to F. oxysporum infection provides a solid basis for future environmentally-friendly choices for application in soybean disease control programs.

Growth Performance, Carcass Traits and Meat Quality of Slower-growing and Fast-growing Chickens Raised with and without Outdoor Access

  • Mikulski, Dariusz;Celej, Joanna;Jankowski, Jan;Majewska, Teresa;Mikulska, Marzena
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.10
    • /
    • pp.1407-1416
    • /
    • 2011
  • The objective of this study was to determine the effect of genotype (slower-growing vs. fast-growing) and production system (access to outdoors vs. indoor) on the growth performance, carcass yield and meat quality (chemical composition, physicochemical and sensory properties) of chickens. The experiment was performed on 1,040 day-old hybrid male chickens of two genotypes. Slower-growing chickens (Hubbard JA957, certified) and fast-growing chickens (Hubbard F15) were fed identical diets until 65 days of age. Both genotypes (each represented by 520 birds) were divided into two subgroups and were raised in pens on litter with outdoor access or in indoor confinement without outdoor access (four replications per subgroup, each of 65 birds). Until day 21, the birds stayed in the indoor facility, in deep-litter pens. The birds could forage on pasture 12 h daily, commencing at three weeks of age. Stocking density was 0.13 $m^2$ floor space per bird in pens on litter, and 0.8 $m^2$ per bird in grassy yards. Compared with fast-growing, slower-growing chickens were significantly lighter (by 17%), had a lower breast and thigh muscle yield and a higher abdominal fat content, but they were characterized by higher survival rates at 65 days, a higher protein content and a lower fat content of breast meat. Outdoor access had no negative effects on the growth performance, muscle yield, the fatty acid profile and oxidative status of meat lipids. The meat of free-range chickens was darker in color, it had a higher protein content and a better water-holding capacity, but it was less juicy than the meat of birds raised indoors.

Phase Transformation of Ti-Ni-Zr Icosahedral Phase and Fabrication of Porous Ti and W Compacts using Electro-Discharge Sintering (전기방전소결을 이용한 Ti-Ni-Zr 준 결정상의 상변화 연구와 Ti, W 다공체 제작)

  • Cho, J.Y.;Song, G.A.;Lee, M.H.;Lee, H.S.;Lee, W.H.;Kim, K.B.
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.149-158
    • /
    • 2011
  • Electro-Discharge Sintering (EDS) employs a high-voltage/high-current-density pulse of electrical energy, discharged from a capacitor bank, to instantaneously consolidate powders. In the present study, a single pulse of 0.57-1.1 kJ/0.45 g-atomized spherical $Ti_{52}Zr_{28}Ni_{20}$ powders in size range of 10~30 and $30\sim50{\mu}m$ consisting of ${\beta}$-(Ti, Zr) and icosahedral phases were applied to examine the structural evolution of icosahedral phase during EDS. Structural investigation reveals that high electrical input energy facilitates complete decomposition of icosahedral phase into C14 laves and ${\beta}$-(Ti, Zr) phases. Moreover, critical input energy inducing decomposition of the icosahedral phase during EDS depends on the size of the powder. Porous Ti and W compacts have been fabricated by EDS using rectangular and spherical powders upon various input energy at a constant capacitance of $450{\mu}F$ in order to verify influence of powder shape on microstructure of porous compacts. Besides, generated heat (${\Delta}H$) during EDS, which is measured by an oscilloscope, is closely correlated with powder size.

Characterization and Identification of Organic Selenium-enriched Bacteria Isolated from Rumen Fluid and Hot Spring Water

  • Dalia, A.M.;Loh, T.C.;Sazili, A.Q.;Jahromi, M.F.;Samsudin, A.A.
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.4
    • /
    • pp.343-353
    • /
    • 2017
  • In the present study, the isolation of selenium (Se)-enriched bacteria from rumen fluid and hot spring water was carried out. Rumen fluid samples were taken from cannulated goats fed a basal diet and the water samples were collected from Selayang hot spring, Selangor-Malaysia. A total number of 140 Se-tolerant isolates were obtained aerobically using an Se-enriched medium and spread plate technique. All the isolates were initially screened for the ability to transform the Se-containing medium to a red-orange culture using a spectrophotometer. Twenty isolates of dark red-orange medium were selected for a screening of the highest Se-containing protein accumulating strains using the dialysis technique and icp.ms to measure the Se content. Four isolates, identified as Enterobacter cloacae (ADS1, ADS7, and ADS11), and Klebsiella pneumoniae (ADS2) from rumen fluid origin, as well as, one isolate from hot spring water (Stenotrophomonas maltophilia (ADS18)), were associated with the highest biomass organic Se-containing protein when grown in a medium enriched with $10{\mu}g/ml$ sodium selenite. In addition, around $50{\mu}g/100{\mu}g$ of the absorbed inorganic Se was accumulated as an organic form. Organic Se-containing protein in all the selected strains showed antioxidant properties in the range of 0.306 to 0.353 Trolox equivalent antioxidant capacity (TEAC) mg/ml. Therefore, these strains may offer a potential source of organic Se due to their Se-tolerant nature and higher biomass organic to inorganic Se ratio.