Design of RFID Passive Tag Antennas in UHF Band

UHF 대역 수동형 RFID 태그 안테나 설계

  • Cho Chihyun (School of Electrical and Electronic Engineering, Hongik University) ;
  • Choo Hosung (School of Electrical and Electronic Engineering, Hongik University) ;
  • Park Ikmo (Department of Electronic and Engineering, Ajou University) ;
  • Kim Youngkil (Department of Electronic and Engineering, Ajou University)
  • 조치현 (홍익대학교 전자전기공학부) ;
  • 추호성 (홍익대학교 전자전기공학부) ;
  • 박익모 (아주대학교 전자공학부) ;
  • 김영길 (아주대학교 전자공학부)
  • Published : 2005.09.01

Abstract

In this paper, we examined the operating principle of a passive tag antenna for RFID system in UHF band. Based on the study, we proposed a novel RFID tag antenna which adopts the inductively coupled feeding structure to match antenna impedance to a capacitively loaded commercial tag chip. The proposed tag antenna consists of microstrip lines on a thin PET substrate for low-cost fabrication. The detail structure of the tag antenna were optimized using a full electromagnetic wave simulator of IE3D in conjunction with a Pareto genetic algorithm and the size of the tag antenna can be reduced up to kr=0.27($2 cm^2$). We built some sample antennas and measured the antenna characteristics such as a return loss, an efficiency, and radiation patterns. The readable range of the tag antenna with a commercial RFID system showed about 1 to 3 m.

본 논문에서는 수식적 방법을 통하여 수동 RFID 태그 안테나의 동작 원리를 설명하였고, 유도 결합 방식을 이용하여 커패시티브한 태그 칩을 부가적인 정합 회로 없이 장착할 수 있는 UH F대역 초소형 수동 RFID 태그 안테나를 제안하였다. 제안한 안테나는 단일 평면 구조 형태로 PET 기판에 손쉽게 인쇄할 수 있어 생산비 절감을 통한 대량 생산이 용이하며, Pareto 유전자 알고리즘과 IE3D 시뮬레이션 툴로 최적화하여 안테나의 크기를 kr=0.27($2 cm^2$)까지 소형화하였다. 최적화 한 RFID 태그 안테나의 성능을 검증하기 위하여 몇 개의 표본 안테나를 제작하고 반사 손실, 복사 효율, 복사 패턴 등을 측정하였다. 상용 태그 칩과 고정형 리더 시스템을 이용하여 제작된 태그 안테나의 인식 거리를 측정하였고, 약 $1{\~}3 m$의 인식 거리를 가지는 것을 확인하였다.

Keywords

References

  1. R. Glidden, C. Bockorick, S. Cooper, C. Diorio, D. Dressler, V. Gutnik, C. Hagen, D. Hara, T. Hass, T. Humes, J. Hyde, R. Olive, O. Onen, A. Pesavento, K. Sundstrom, and M. Thomas, 'Design of ultralow-cost UHF RFID tags for supply chain application', IEEE Communication Magazine, vol. 42, pp. 140-151, Aug. 2004
  2. K. Finkenzeller, RFID Handbook, 2nd Ed., West Sussex, England: Wiley, 2003
  3. G. Goubau, N. Puri, and F. Schwering, 'Diakoptic theory for multielement antennas', IEEE Trans. Antennas Propagat., vol. 30, pp. 15-26, Jan. 1982 https://doi.org/10.1109/TAP.1982.1142741
  4. H. D. Foltz, J. S. McLean, and G. Crook, 'Diskloaded monopoles with parallel strip elements', IEEE Trans. Antennas Propagat., vol. 46, pp. 1894-1896, Dec. 1998 https://doi.org/10.1109/8.743844
  5. J. A. Dobbins, R. L. Rogers, 'Folded conical helix antenna', IEEE Trans. Antennas Propagat., vol. 49, pp. 1777-1781, Dec. 2001 https://doi.org/10.1109/8.982460
  6. E. E. Altshuler, 'Electrically small self-resonant wire antennas optimized using a genetic algorithm', IEEE Trans. Antennas Propagat., vol. 50, pp. 297-300, Mar. 2002 https://doi.org/10.1109/8.999619
  7. D. M. Pozar, Microwave Engineering, New York: John Wiley & Sons, 1998
  8. U. Karthaus, M. Fischer, 'Fully integrated passive UHF RFID transponder IC with 16.7- $\mu$ W minimum RF input power', IEEE J. Solid-State. Circuits, vol. 38, pp. 1602-1608, Oct. 2003 https://doi.org/10.1109/JSSC.2003.817249
  9. W. L. Stutzman, G. A. Thiele, Antenna Theory and Design, New York: John Wiley & Sons, 1998
  10. J. S. McLean, 'A re-examination of the fundamental limits on the radiation Q of electrically small antennas', IEEE Trans. Antennas Propagat., vol. 44, pp. 672-675, May 1996 https://doi.org/10.1109/8.496253
  11. W. Geyi, 'Physical limitation of antenna', IEEE Trans. Antennas Propagat., vol. 51, pp. 2116- 2123, Aug. 2003 https://doi.org/10.1109/TAP.2003.814754
  12. H. Choo, H. Ling, 'Design of electrically small planar antennas using an inductively coupled feed', Electron. Lett., vol. 39, pp. 3080-3081, Oct. 2003
  13. N. Srinivas, K. Deb, 'Multiobjective optimization using nondominated sorting in genetic algorithm', J. Evolutionary Computation, vol. 2, pp. 221-248, 1995
  14. J. Horn, N. Nafpliotis, and D. E. Goldberg, 'A niched Pareto genetic algorithm for multi-objective optimization', Proc. First IEEE Conf. Evolutionary Computation, vol. 1, pp. 82-87, 1994
  15. T. Hiroyasu, M. Miki, and S. Watanabe, 'The new model of parallel genetic algorithm in multi-objective optimization problems-divided range multi-objective genetic algorithm', Proc. 2000 Congress on Evolutionary Computation, vol. 1, pp. 333-340, 2000
  16. Y. Rahmat-samii, E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, New York: John Wiley & Sons, 1999
  17. Commercial RFID system, http://www.alientechnology.com [Online]
  18. H. A. Wheeler, 'The radiansphere around a small antenna', Proc. IRE, vol. 47, pp. 1325-1331, Aug. 1959