Browse > Article
http://dx.doi.org/10.4014/mbl.1712.12010

Characterization and Identification of Organic Selenium-enriched Bacteria Isolated from Rumen Fluid and Hot Spring Water  

Dalia, A.M. (Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia)
Loh, T.C. (Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia)
Sazili, A.Q. (Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia)
Jahromi, M.F. (Institute of Tropical Agriculture, Universiti Putra Malaysia)
Samsudin, A.A. (Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia)
Publication Information
Microbiology and Biotechnology Letters / v.45, no.4, 2017 , pp. 343-353 More about this Journal
Abstract
In the present study, the isolation of selenium (Se)-enriched bacteria from rumen fluid and hot spring water was carried out. Rumen fluid samples were taken from cannulated goats fed a basal diet and the water samples were collected from Selayang hot spring, Selangor-Malaysia. A total number of 140 Se-tolerant isolates were obtained aerobically using an Se-enriched medium and spread plate technique. All the isolates were initially screened for the ability to transform the Se-containing medium to a red-orange culture using a spectrophotometer. Twenty isolates of dark red-orange medium were selected for a screening of the highest Se-containing protein accumulating strains using the dialysis technique and icp.ms to measure the Se content. Four isolates, identified as Enterobacter cloacae (ADS1, ADS7, and ADS11), and Klebsiella pneumoniae (ADS2) from rumen fluid origin, as well as, one isolate from hot spring water (Stenotrophomonas maltophilia (ADS18)), were associated with the highest biomass organic Se-containing protein when grown in a medium enriched with $10{\mu}g/ml$ sodium selenite. In addition, around $50{\mu}g/100{\mu}g$ of the absorbed inorganic Se was accumulated as an organic form. Organic Se-containing protein in all the selected strains showed antioxidant properties in the range of 0.306 to 0.353 Trolox equivalent antioxidant capacity (TEAC) mg/ml. Therefore, these strains may offer a potential source of organic Se due to their Se-tolerant nature and higher biomass organic to inorganic Se ratio.
Keywords
Accumulation; antioxidant; bacteria; isolation; organic selenium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Antonioli P, Lampis S, Chesini I, Vallini G, Rinalducci S, Zolla L, et al. 2007. Stenotrophomonas maltophilia SeITE02, a new bacterial strain suitable for bioremediation of selenite-contaminated environmental matrices. Appl. Environ. Microbiol. 73: 6854-6863.   DOI
2 Huber R, Sacher M, Huber H, Rose D. 2000. Respiration of arsenate and selenate by hyperthermophilic archaea. Syst. Appl. Microbiol. 23: 305-314.   DOI
3 Hidiroglou M, Heaney DP, Jenkins KJ. 1968. Metabolism of inorganic selenium in rumen bacteria. Can. J. Physiol. Pharmacol. 46: 229-232.   DOI
4 Shahverdi AR, Shakibaie M, Nazari P. 2011. Basic and practical procedures for microbial synthesis of nanoparticles, pp. 177-195. InMahendra R, Nelson D (eds.), Metal nanoparticles in microbiology. Springer Berlin Heidelberg.
5 Maurogenakis F, Metaxopoulos J. 1994. Characterisation of lactic acid bacteria isolated from naturally fermented Greek dry salami. Int. J. Food Microbiol. 23: 179-196.   DOI
6 Ponce De Leon CA, Bayon MM, Paquin C, Caruso JA. 2002. Selenium incorporation into Saccharomyces cerevisiae cells: A study of different incorporation methods. J. Appl. Microbiol. 92: 602-610.   DOI
7 Zhao L, Zhao G, Zhao Z, Chen P, Tong J, Hu X. 2004. Selenium distribution in a Se-enriched mushroom species of the Genus Ganoderma. J. Agric Food Chem. 52: 3954-3959.   DOI
8 Garbisu C, Ishii T, Leighton T, Buchanan B. 1996. Bacterial reduction of selenite to elemental selenium. Chem. Geol. 132: 199-204.   DOI
9 Chan KW, Khong NMH, Iqbal S, Umar IM, Ismail M. 2012. Antioxidant property enhancement of sweet potato flour under simulated gastrointestinal pH. Int. J. Mol. Sci. 13: 8987-8997.   DOI
10 Nancharaiah YV, Lens PNL. 2015. The ecology and biotechnology of selenium-respiring bacteria. Microbiol. Mol. Biol. Rev. 79: 61-80.   DOI
11 El-Ramady H, Abdalla N, Alshaal T, Domokos-Szabolcsy E, Elhawat N, Prokisch J, et al. 2014. Selenium in soils under climate change, the implication for human health. Environ. Chem. Lett. 13: 1-19.
12 Mainville AM, Odongo NE, Bettger WJ, McBride BW, Osborne VR. 2009. Selenium uptake by ruminal microorganisms from organic and inorganic sources in dairy cows. Canadian J. Anim. Sci. 89: 105-110.   DOI
13 Rother M. 2012. Selenium metabolism in prokaryotes, pp. 457-470. In Hatfield DL, Berry MJ, Gladyshev VN (eds.), Selenium. Springer, New York.
14 Fernandez-Llamosas H, Castro L, Blazquez ML, Diaz E, Carmona M. 2016. Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB. Microb. Cell Fact. 15: 109.   DOI
15 Calomme M, Hu J, Van-Den BK, Berghe DV. 1995. Seleno-lactobacillus. Biol. Trace Elem. Res. 47: 379-383.   DOI
16 Chmielewski J, Tyflewska A. 2007. Selenium in microorganisms. pp. 54-68. In Wierzbicka M, Bulska E, Pyrzynska K, Wysocka I, Zachara BA (eds.), Selenium. The element essential to health and fascinating for researchers. Warsaw, Malamut.
17 Galano E, Mangiapane E, Bianga J, Palmese A, Pessione E, Szpunar J, et al. 2013. Privileged incorporation of selenium as selenocysteine in Lactobacillus reuteri proteins demonstrated by selenium-specific imaging and proteomics. Mol. Cell Proteom. 12: 2196-2204.   DOI
18 Xu CL, Wang YZ, Jin ML, Yang XQ. 2009. Preparation, characterisation and immunomodulatory activity of selenium-enriched exopolysaccharide produced by bacterium Enterobacter cloacae Z0206. Bioresour Technol. 100: 2095-2097.   DOI
19 Losi ME, Frankenberger WT. 1997. Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl. Environ. Microbiol. 63: 3079-3084.
20 Palomo M, Gutierrez AM, Perez-Conde MC, Camara C, Madrid Y. 2014. Se metallomics during lactic fermentation of Se-enriched yogurt. Food Chem. 164: 371-379.   DOI
21 Dungan RS, Frankenberger-Jr WT. 2001. Biotransformations of selenium by Enterobacter cloacae SLD1a-1: formation of dimethylselenide. Biogeochemistry 55: 73-86.   DOI
22 Fesharaki PJ, Nazari P, Shakibaie M, Rezaie S, Banoee M, Abdollahi M, et al. 2010. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz. J. Microbiol. 41: 461-466.   DOI
23 Suhajda A, Hegoczki J, Janzso B, Pais I, Vereczkey G. 2000. Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae. J. Trace Elem. Med. Biol. 14: 43-47.   DOI
24 Simmons DB, Wallschlager D. 2005. A critical review of the biogeochemistry and ecotoxicology of selenium in lotic and lentic environments. Environ. Toxicol. Chem. 24: 1331-1343.   DOI
25 Dong Y, Zhang H, Hawthorn L, Ganther HE, Ip C. 2003. Delineation of the molecular basis for selenium-induced growth arrest in human prostate cancer cells by oligonucleotide array. Cancer Res. 63: 52-59.
26 Hunter WJ, Manter DK. 2009. Reduction of selenite to elemental red selenium by Pseudomonas sp. strain CA5. Curr. Microbiol. 58: 493-498.   DOI
27 Chapman J, Weir E, Regan F. 2010. Period four metal nanoparticles on the inhibition of biofouling. Colloids Surf. B Biointerfaces 78: 208-216.   DOI
28 Dumont E, Vanhaecke F, Cornelis R. 2006. Selenium speciation from food source to metabolites: a critical review. Anal. Bioanal. Chem. 385: 1304-1323.   DOI
29 Eszenyi P, Sztrik A, Babka B, Prokisch J. 2011. Elemental, nanosized (100-500 nm) selenium production by probiotic lactic acid bacteria. Int. J. Biosci. Biochem. Bioinforma. 1: 148-152.
30 Fordyce FM. 2013. Selenium deficiency and toxicity in the environment, pp. 373-415. In Selinus O, Brian E, Davies CB, Theo CD (eds.), Essentials of Medical Geology. Springer, Netherlands.
31 Zhang B, Zhou K, Zhang J, Chen Q, Liu G, Shang N, et al. 2009. Accumulation and species distribution of selenium in Seenriched bacterial cells of the Bifidobacterium animals 01. Food Chem. 115: 727-734.   DOI
32 Andreoni V, Luischi MM, Cavalca L, Erba D, Ciappellano S. 2000. Selenite tolerance and accumulation in the Lactobacillus species. Ann. Microbiol. 50: 77-88.
33 Moore MD, Kaplan S. 1992. Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J. Bacteriol. 174: 1505-1514.   DOI
34 Chen L, Pan DD, Zhou J, Jiang YZ. 2005. Protective Effect of selenium- enriched Lactobacillus on CCl-4-induced liver injury in mice and its possible mechanisms. World J. Gastroenterol. 11: 5795- 5800.   DOI
35 Pieniz S, Andreazza R, Pereira JQ, de Oliveira Camargo FA, Brandelli A. 2013. Production of selenium-enriched biomass by Enterococcus durans. Biol. Trace Elem. Res. 155: 447-454.   DOI
36 Lamberti C, Mangiapane E, Pessione A, Mazzoli R, Giunta C, Pessione E. 2011. Proteomic characterization of a selenium-metabolizing probiotic Lactobacillus reuteri Lb2 BM for nutraceutical applications. Proteomics 11: 2212-2221.   DOI
37 Xia SK, Chen L, Liang JQ. 2007. Enriched selenium and its effects on growth and biochemical composition in Lactobacillus bulgaricus. J. Agric. Food Chem. 55: 2413-2417.   DOI
38 Kessi J, Hanselmann KW. 2004. Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodo- spirillum rubrum and Escherichia coli. J. Biol. Chem. 279: 50662-50669.   DOI