Browse > Article

Design of RFID Passive Tag Antennas in UHF Band  

Cho Chihyun (School of Electrical and Electronic Engineering, Hongik University)
Choo Hosung (School of Electrical and Electronic Engineering, Hongik University)
Park Ikmo (Department of Electronic and Engineering, Ajou University)
Kim Youngkil (Department of Electronic and Engineering, Ajou University)
Publication Information
Abstract
In this paper, we examined the operating principle of a passive tag antenna for RFID system in UHF band. Based on the study, we proposed a novel RFID tag antenna which adopts the inductively coupled feeding structure to match antenna impedance to a capacitively loaded commercial tag chip. The proposed tag antenna consists of microstrip lines on a thin PET substrate for low-cost fabrication. The detail structure of the tag antenna were optimized using a full electromagnetic wave simulator of IE3D in conjunction with a Pareto genetic algorithm and the size of the tag antenna can be reduced up to kr=0.27($2 cm^2$). We built some sample antennas and measured the antenna characteristics such as a return loss, an efficiency, and radiation patterns. The readable range of the tag antenna with a commercial RFID system showed about 1 to 3 m.
Keywords
Pareto Genetic Algorithm; Small Antenna; Inductively Coupled Antenna; RFID Antenna;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. D. Foltz, J. S. McLean, and G. Crook, 'Diskloaded monopoles with parallel strip elements', IEEE Trans. Antennas Propagat., vol. 46, pp. 1894-1896, Dec. 1998   DOI   ScienceOn
2 Commercial RFID system, http://www.alientechnology.com [Online]
3 E. E. Altshuler, 'Electrically small self-resonant wire antennas optimized using a genetic algorithm', IEEE Trans. Antennas Propagat., vol. 50, pp. 297-300, Mar. 2002   DOI   ScienceOn
4 Y. Rahmat-samii, E. Michielssen, Electromagnetic Optimization by Genetic Algorithms, New York: John Wiley & Sons, 1999
5 G. Goubau, N. Puri, and F. Schwering, 'Diakoptic theory for multielement antennas', IEEE Trans. Antennas Propagat., vol. 30, pp. 15-26, Jan. 1982   DOI
6 U. Karthaus, M. Fischer, 'Fully integrated passive UHF RFID transponder IC with 16.7- $\mu$ W minimum RF input power', IEEE J. Solid-State. Circuits, vol. 38, pp. 1602-1608, Oct. 2003   DOI   ScienceOn
7 N. Srinivas, K. Deb, 'Multiobjective optimization using nondominated sorting in genetic algorithm', J. Evolutionary Computation, vol. 2, pp. 221-248, 1995
8 T. Hiroyasu, M. Miki, and S. Watanabe, 'The new model of parallel genetic algorithm in multi-objective optimization problems-divided range multi-objective genetic algorithm', Proc. 2000 Congress on Evolutionary Computation, vol. 1, pp. 333-340, 2000
9 J. A. Dobbins, R. L. Rogers, 'Folded conical helix antenna', IEEE Trans. Antennas Propagat., vol. 49, pp. 1777-1781, Dec. 2001   DOI   ScienceOn
10 R. Glidden, C. Bockorick, S. Cooper, C. Diorio, D. Dressler, V. Gutnik, C. Hagen, D. Hara, T. Hass, T. Humes, J. Hyde, R. Olive, O. Onen, A. Pesavento, K. Sundstrom, and M. Thomas, 'Design of ultralow-cost UHF RFID tags for supply chain application', IEEE Communication Magazine, vol. 42, pp. 140-151, Aug. 2004
11 H. Choo, H. Ling, 'Design of electrically small planar antennas using an inductively coupled feed', Electron. Lett., vol. 39, pp. 3080-3081, Oct. 2003
12 K. Finkenzeller, RFID Handbook, 2nd Ed., West Sussex, England: Wiley, 2003
13 J. Horn, N. Nafpliotis, and D. E. Goldberg, 'A niched Pareto genetic algorithm for multi-objective optimization', Proc. First IEEE Conf. Evolutionary Computation, vol. 1, pp. 82-87, 1994
14 W. L. Stutzman, G. A. Thiele, Antenna Theory and Design, New York: John Wiley & Sons, 1998
15 H. A. Wheeler, 'The radiansphere around a small antenna', Proc. IRE, vol. 47, pp. 1325-1331, Aug. 1959
16 J. S. McLean, 'A re-examination of the fundamental limits on the radiation Q of electrically small antennas', IEEE Trans. Antennas Propagat., vol. 44, pp. 672-675, May 1996   DOI   ScienceOn
17 W. Geyi, 'Physical limitation of antenna', IEEE Trans. Antennas Propagat., vol. 51, pp. 2116- 2123, Aug. 2003   DOI   ScienceOn
18 D. M. Pozar, Microwave Engineering, New York: John Wiley & Sons, 1998