DOI QR코드

DOI QR Code

Phase Transformation of Ti-Ni-Zr Icosahedral Phase and Fabrication of Porous Ti and W Compacts using Electro-Discharge Sintering

전기방전소결을 이용한 Ti-Ni-Zr 준 결정상의 상변화 연구와 Ti, W 다공체 제작

  • Cho, J.Y. (Department of Advanced Materials Engineering, Sejong University) ;
  • Song, G.A. (Department of Advanced Materials Engineering, Sejong University) ;
  • Lee, M.H. (Advanced Materials Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, H.S. (Advanced Materials Division, Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, W.H. (Department of Advanced Materials Engineering, Sejong University) ;
  • Kim, K.B. (Department of Advanced Materials Engineering, Sejong University)
  • Received : 2011.02.28
  • Accepted : 2011.03.29
  • Published : 2011.04.28

Abstract

Electro-Discharge Sintering (EDS) employs a high-voltage/high-current-density pulse of electrical energy, discharged from a capacitor bank, to instantaneously consolidate powders. In the present study, a single pulse of 0.57-1.1 kJ/0.45 g-atomized spherical $Ti_{52}Zr_{28}Ni_{20}$ powders in size range of 10~30 and $30\sim50{\mu}m$ consisting of ${\beta}$-(Ti, Zr) and icosahedral phases were applied to examine the structural evolution of icosahedral phase during EDS. Structural investigation reveals that high electrical input energy facilitates complete decomposition of icosahedral phase into C14 laves and ${\beta}$-(Ti, Zr) phases. Moreover, critical input energy inducing decomposition of the icosahedral phase during EDS depends on the size of the powder. Porous Ti and W compacts have been fabricated by EDS using rectangular and spherical powders upon various input energy at a constant capacitance of $450{\mu}F$ in order to verify influence of powder shape on microstructure of porous compacts. Besides, generated heat (${\Delta}H$) during EDS, which is measured by an oscilloscope, is closely correlated with powder size.

Keywords

References

  1. B. K. Choi, H. S. Lee, S. K. Kang, K. H. Kim, S. T. Oh: Pros. Ind. Che., 7 (2004) 41.
  2. Y. J. Cho, C. M. Lee, H. S. Chang, N. S. Lee, K. B. Kim, E. C. Jeon, J. H. Sok, H. Kwon, K. B. Lee and W. H. Lee: Scripta Mater., 57 (2007) 129. https://doi.org/10.1016/j.scriptamat.2007.03.026
  3. Y. B. An, N. H. Oh, Y. W. Chun, Y. H. Kim, J. S. Park, K. O. Choi, T. G. Eom, T. H. Byun, J. Y. Kim, C. Y. Hyun, D. K. Kim, C. S. Byun, J. H. Sok, J. J. Kwon and W. H. Lee: Scripta Mater., 53 (2005) 905. https://doi.org/10.1016/j.scriptamat.2005.06.033
  4. K. Okazaki, W. H. Lee, D. K. Kim and R. A. Kopczyk: J. Biomed. Mater. Res., 25 (1991) 1417. https://doi.org/10.1002/jbm.820251202
  5. W. H. Lee and D. A. Puleo: J. Mater. Sci. Lett., 18 (1999) 817. https://doi.org/10.1023/A:1006653503849
  6. W. H. Lee and C. Y. Hyun: J. Mater. Proc. Tech., 189 (2007) 219. https://doi.org/10.1016/j.jmatprotec.2007.01.025
  7. C. Janot, R. Mosseri: Proceedings of the 5th International Conference on Quasicrystals (Eds.), World Scientific, Singapore, 1995.
  8. S. Takeuchi, T. Fujiwara: Proceedings of the 6th International Conference on Quasicrystals (Eds.), World Scientific, Singapore, 1998.
  9. D. H. Bae, S. H. Kim, D. H. Kim and W. T. Kim: Acta Mater., 50 (2002) 2343. https://doi.org/10.1016/S1359-6454(02)00067-8
  10. D. H. Bae, M. H. Lee, K. T. Kim, W. T. Kim and D. H. Kim: J. Alloys Compd., 342 (2002) 445. https://doi.org/10.1016/S0925-8388(02)00273-6
  11. K. F. Kelton, P. C. Gibbons: MRS Bull., 22 (1997) 69. https://doi.org/10.1557/S0883769400034473
  12. A. M. Viano, R. M. Stroud, P. C. Gibbons, A. F. McDowell, M. S. Conradi and K. F. Kelton: Phys. Rev. B, 51 (1995) 12026. https://doi.org/10.1103/PhysRevB.51.12026
  13. K. F. Kelton, in: J. H. Westbrooke and R. L. Fleischer: Intermetallic Compounds, Principles and Practice, Wiley (Eds.), New York, (1995) 453.
  14. Y. W. Cheon, Y. J. Jo, C. M. Lee, H. S. Jang, K. B. Kim and W. H. Lee: Mater. Sci. Eng. A, 467 (2007) 89. https://doi.org/10.1016/j.msea.2007.02.076
  15. Y. J. Jo, C. M. Lee, H. S. Jang, N. S. Lee, J. H. Suk, W. H. Lee: J. Mater. Process. Tech., 194 (2007) 121. https://doi.org/10.1016/j.jmatprotec.2007.04.102
  16. R. M. Stroud, K. F. Kelton and S. T. Misture: J. Mater. Res., 12 (1997) 434. https://doi.org/10.1557/JMR.1997.0064
  17. Y. B. An and W. H. Lee: Mater. Chem. Phys., 95 (2006) 242. https://doi.org/10.1016/j.matchemphys.2005.06.011