Browse > Article
http://dx.doi.org/10.4150/KPMI.2011.18.2.149

Phase Transformation of Ti-Ni-Zr Icosahedral Phase and Fabrication of Porous Ti and W Compacts using Electro-Discharge Sintering  

Cho, J.Y. (Department of Advanced Materials Engineering, Sejong University)
Song, G.A. (Department of Advanced Materials Engineering, Sejong University)
Lee, M.H. (Advanced Materials Division, Korea Institute of Industrial Technology (KITECH))
Lee, H.S. (Advanced Materials Division, Korea Institute of Industrial Technology (KITECH))
Lee, W.H. (Department of Advanced Materials Engineering, Sejong University)
Kim, K.B. (Department of Advanced Materials Engineering, Sejong University)
Publication Information
Journal of Powder Materials / v.18, no.2, 2011 , pp. 149-158 More about this Journal
Abstract
Electro-Discharge Sintering (EDS) employs a high-voltage/high-current-density pulse of electrical energy, discharged from a capacitor bank, to instantaneously consolidate powders. In the present study, a single pulse of 0.57-1.1 kJ/0.45 g-atomized spherical $Ti_{52}Zr_{28}Ni_{20}$ powders in size range of 10~30 and $30\sim50{\mu}m$ consisting of ${\beta}$-(Ti, Zr) and icosahedral phases were applied to examine the structural evolution of icosahedral phase during EDS. Structural investigation reveals that high electrical input energy facilitates complete decomposition of icosahedral phase into C14 laves and ${\beta}$-(Ti, Zr) phases. Moreover, critical input energy inducing decomposition of the icosahedral phase during EDS depends on the size of the powder. Porous Ti and W compacts have been fabricated by EDS using rectangular and spherical powders upon various input energy at a constant capacitance of $450{\mu}F$ in order to verify influence of powder shape on microstructure of porous compacts. Besides, generated heat (${\Delta}H$) during EDS, which is measured by an oscilloscope, is closely correlated with powder size.
Keywords
Powder metallurgy; Porous compact; Quasicrystals; Electro discharge sintering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. H. Bae, M. H. Lee, K. T. Kim, W. T. Kim and D. H. Kim: J. Alloys Compd., 342 (2002) 445.   DOI   ScienceOn
2 K. F. Kelton, P. C. Gibbons: MRS Bull., 22 (1997) 69.   DOI
3 A. M. Viano, R. M. Stroud, P. C. Gibbons, A. F. McDowell, M. S. Conradi and K. F. Kelton: Phys. Rev. B, 51 (1995) 12026.   DOI   ScienceOn
4 K. F. Kelton, in: J. H. Westbrooke and R. L. Fleischer: Intermetallic Compounds, Principles and Practice, Wiley (Eds.), New York, (1995) 453.
5 Y. W. Cheon, Y. J. Jo, C. M. Lee, H. S. Jang, K. B. Kim and W. H. Lee: Mater. Sci. Eng. A, 467 (2007) 89.   DOI   ScienceOn
6 Y. J. Jo, C. M. Lee, H. S. Jang, N. S. Lee, J. H. Suk, W. H. Lee: J. Mater. Process. Tech., 194 (2007) 121.   DOI   ScienceOn
7 R. M. Stroud, K. F. Kelton and S. T. Misture: J. Mater. Res., 12 (1997) 434.   DOI   ScienceOn
8 Y. B. An and W. H. Lee: Mater. Chem. Phys., 95 (2006) 242.   DOI   ScienceOn
9 B. K. Choi, H. S. Lee, S. K. Kang, K. H. Kim, S. T. Oh: Pros. Ind. Che., 7 (2004) 41.
10 Y. J. Cho, C. M. Lee, H. S. Chang, N. S. Lee, K. B. Kim, E. C. Jeon, J. H. Sok, H. Kwon, K. B. Lee and W. H. Lee: Scripta Mater., 57 (2007) 129.   DOI   ScienceOn
11 Y. B. An, N. H. Oh, Y. W. Chun, Y. H. Kim, J. S. Park, K. O. Choi, T. G. Eom, T. H. Byun, J. Y. Kim, C. Y. Hyun, D. K. Kim, C. S. Byun, J. H. Sok, J. J. Kwon and W. H. Lee: Scripta Mater., 53 (2005) 905.   DOI   ScienceOn
12 C. Janot, R. Mosseri: Proceedings of the 5th International Conference on Quasicrystals (Eds.), World Scientific, Singapore, 1995.
13 K. Okazaki, W. H. Lee, D. K. Kim and R. A. Kopczyk: J. Biomed. Mater. Res., 25 (1991) 1417.   DOI
14 W. H. Lee and D. A. Puleo: J. Mater. Sci. Lett., 18 (1999) 817.   DOI   ScienceOn
15 W. H. Lee and C. Y. Hyun: J. Mater. Proc. Tech., 189 (2007) 219.   DOI   ScienceOn
16 S. Takeuchi, T. Fujiwara: Proceedings of the 6th International Conference on Quasicrystals (Eds.), World Scientific, Singapore, 1998.
17 D. H. Bae, S. H. Kim, D. H. Kim and W. T. Kim: Acta Mater., 50 (2002) 2343.   DOI   ScienceOn