DOI QR코드

DOI QR Code

Characterization and Identification of Organic Selenium-enriched Bacteria Isolated from Rumen Fluid and Hot Spring Water

  • Dalia, A.M. (Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia) ;
  • Loh, T.C. (Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia) ;
  • Sazili, A.Q. (Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia) ;
  • Jahromi, M.F. (Institute of Tropical Agriculture, Universiti Putra Malaysia) ;
  • Samsudin, A.A. (Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia)
  • Received : 2017.12.13
  • Accepted : 2017.12.18
  • Published : 2017.12.28

Abstract

In the present study, the isolation of selenium (Se)-enriched bacteria from rumen fluid and hot spring water was carried out. Rumen fluid samples were taken from cannulated goats fed a basal diet and the water samples were collected from Selayang hot spring, Selangor-Malaysia. A total number of 140 Se-tolerant isolates were obtained aerobically using an Se-enriched medium and spread plate technique. All the isolates were initially screened for the ability to transform the Se-containing medium to a red-orange culture using a spectrophotometer. Twenty isolates of dark red-orange medium were selected for a screening of the highest Se-containing protein accumulating strains using the dialysis technique and icp.ms to measure the Se content. Four isolates, identified as Enterobacter cloacae (ADS1, ADS7, and ADS11), and Klebsiella pneumoniae (ADS2) from rumen fluid origin, as well as, one isolate from hot spring water (Stenotrophomonas maltophilia (ADS18)), were associated with the highest biomass organic Se-containing protein when grown in a medium enriched with $10{\mu}g/ml$ sodium selenite. In addition, around $50{\mu}g/100{\mu}g$ of the absorbed inorganic Se was accumulated as an organic form. Organic Se-containing protein in all the selected strains showed antioxidant properties in the range of 0.306 to 0.353 Trolox equivalent antioxidant capacity (TEAC) mg/ml. Therefore, these strains may offer a potential source of organic Se due to their Se-tolerant nature and higher biomass organic to inorganic Se ratio.

Keywords

References

  1. Suhajda A, Hegoczki J, Janzso B, Pais I, Vereczkey G. 2000. Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae. J. Trace Elem. Med. Biol. 14: 43-47. https://doi.org/10.1016/S0946-672X(00)80022-X
  2. Fordyce FM. 2013. Selenium deficiency and toxicity in the environment, pp. 373-415. In Selinus O, Brian E, Davies CB, Theo CD (eds.), Essentials of Medical Geology. Springer, Netherlands.
  3. Simmons DB, Wallschlager D. 2005. A critical review of the biogeochemistry and ecotoxicology of selenium in lotic and lentic environments. Environ. Toxicol. Chem. 24: 1331-1343. https://doi.org/10.1897/04-176R.1
  4. Dong Y, Zhang H, Hawthorn L, Ganther HE, Ip C. 2003. Delineation of the molecular basis for selenium-induced growth arrest in human prostate cancer cells by oligonucleotide array. Cancer Res. 63: 52-59.
  5. Hunter WJ, Manter DK. 2009. Reduction of selenite to elemental red selenium by Pseudomonas sp. strain CA5. Curr. Microbiol. 58: 493-498. https://doi.org/10.1007/s00284-009-9358-2
  6. Chapman J, Weir E, Regan F. 2010. Period four metal nanoparticles on the inhibition of biofouling. Colloids Surf. B Biointerfaces 78: 208-216. https://doi.org/10.1016/j.colsurfb.2010.03.002
  7. Dumont E, Vanhaecke F, Cornelis R. 2006. Selenium speciation from food source to metabolites: a critical review. Anal. Bioanal. Chem. 385: 1304-1323. https://doi.org/10.1007/s00216-006-0529-8
  8. Eszenyi P, Sztrik A, Babka B, Prokisch J. 2011. Elemental, nanosized (100-500 nm) selenium production by probiotic lactic acid bacteria. Int. J. Biosci. Biochem. Bioinforma. 1: 148-152.
  9. Andreoni V, Luischi MM, Cavalca L, Erba D, Ciappellano S. 2000. Selenite tolerance and accumulation in the Lactobacillus species. Ann. Microbiol. 50: 77-88.
  10. Moore MD, Kaplan S. 1992. Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J. Bacteriol. 174: 1505-1514. https://doi.org/10.1128/jb.174.5.1505-1514.1992
  11. Chen L, Pan DD, Zhou J, Jiang YZ. 2005. Protective Effect of selenium- enriched Lactobacillus on CCl-4-induced liver injury in mice and its possible mechanisms. World J. Gastroenterol. 11: 5795- 5800. https://doi.org/10.3748/wjg.v11.i37.5795
  12. Zhang B, Zhou K, Zhang J, Chen Q, Liu G, Shang N, et al. 2009. Accumulation and species distribution of selenium in Seenriched bacterial cells of the Bifidobacterium animals 01. Food Chem. 115: 727-734. https://doi.org/10.1016/j.foodchem.2008.12.006
  13. Pieniz S, Andreazza R, Pereira JQ, de Oliveira Camargo FA, Brandelli A. 2013. Production of selenium-enriched biomass by Enterococcus durans. Biol. Trace Elem. Res. 155: 447-454. https://doi.org/10.1007/s12011-013-9818-1
  14. Lamberti C, Mangiapane E, Pessione A, Mazzoli R, Giunta C, Pessione E. 2011. Proteomic characterization of a selenium-metabolizing probiotic Lactobacillus reuteri Lb2 BM for nutraceutical applications. Proteomics 11: 2212-2221. https://doi.org/10.1002/pmic.201000747
  15. Xia SK, Chen L, Liang JQ. 2007. Enriched selenium and its effects on growth and biochemical composition in Lactobacillus bulgaricus. J. Agric. Food Chem. 55: 2413-2417. https://doi.org/10.1021/jf062946j
  16. Kessi J, Hanselmann KW. 2004. Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodo- spirillum rubrum and Escherichia coli. J. Biol. Chem. 279: 50662-50669. https://doi.org/10.1074/jbc.M405887200
  17. Antonioli P, Lampis S, Chesini I, Vallini G, Rinalducci S, Zolla L, et al. 2007. Stenotrophomonas maltophilia SeITE02, a new bacterial strain suitable for bioremediation of selenite-contaminated environmental matrices. Appl. Environ. Microbiol. 73: 6854-6863. https://doi.org/10.1128/AEM.00957-07
  18. Huber R, Sacher M, Huber H, Rose D. 2000. Respiration of arsenate and selenate by hyperthermophilic archaea. Syst. Appl. Microbiol. 23: 305-314. https://doi.org/10.1016/S0723-2020(00)80058-2
  19. Hidiroglou M, Heaney DP, Jenkins KJ. 1968. Metabolism of inorganic selenium in rumen bacteria. Can. J. Physiol. Pharmacol. 46: 229-232. https://doi.org/10.1139/y68-038
  20. Shahverdi AR, Shakibaie M, Nazari P. 2011. Basic and practical procedures for microbial synthesis of nanoparticles, pp. 177-195. InMahendra R, Nelson D (eds.), Metal nanoparticles in microbiology. Springer Berlin Heidelberg.
  21. Maurogenakis F, Metaxopoulos J. 1994. Characterisation of lactic acid bacteria isolated from naturally fermented Greek dry salami. Int. J. Food Microbiol. 23: 179-196. https://doi.org/10.1016/0168-1605(94)90051-5
  22. Ponce De Leon CA, Bayon MM, Paquin C, Caruso JA. 2002. Selenium incorporation into Saccharomyces cerevisiae cells: A study of different incorporation methods. J. Appl. Microbiol. 92: 602-610. https://doi.org/10.1046/j.1365-2672.2002.01562.x
  23. Zhao L, Zhao G, Zhao Z, Chen P, Tong J, Hu X. 2004. Selenium distribution in a Se-enriched mushroom species of the Genus Ganoderma. J. Agric Food Chem. 52: 3954-3959. https://doi.org/10.1021/jf049965i
  24. Garbisu C, Ishii T, Leighton T, Buchanan B. 1996. Bacterial reduction of selenite to elemental selenium. Chem. Geol. 132: 199-204. https://doi.org/10.1016/S0009-2541(96)00056-3
  25. Chan KW, Khong NMH, Iqbal S, Umar IM, Ismail M. 2012. Antioxidant property enhancement of sweet potato flour under simulated gastrointestinal pH. Int. J. Mol. Sci. 13: 8987-8997. https://doi.org/10.3390/ijms13078987
  26. Nancharaiah YV, Lens PNL. 2015. The ecology and biotechnology of selenium-respiring bacteria. Microbiol. Mol. Biol. Rev. 79: 61-80. https://doi.org/10.1128/MMBR.00037-14
  27. El-Ramady H, Abdalla N, Alshaal T, Domokos-Szabolcsy E, Elhawat N, Prokisch J, et al. 2014. Selenium in soils under climate change, the implication for human health. Environ. Chem. Lett. 13: 1-19.
  28. Mainville AM, Odongo NE, Bettger WJ, McBride BW, Osborne VR. 2009. Selenium uptake by ruminal microorganisms from organic and inorganic sources in dairy cows. Canadian J. Anim. Sci. 89: 105-110. https://doi.org/10.4141/CJAS08031
  29. Rother M. 2012. Selenium metabolism in prokaryotes, pp. 457-470. In Hatfield DL, Berry MJ, Gladyshev VN (eds.), Selenium. Springer, New York.
  30. Fernandez-Llamosas H, Castro L, Blazquez ML, Diaz E, Carmona M. 2016. Biosynthesis of selenium nanoparticles by Azoarcus sp. CIB. Microb. Cell Fact. 15: 109. https://doi.org/10.1186/s12934-016-0510-y
  31. Calomme M, Hu J, Van-Den BK, Berghe DV. 1995. Seleno-lactobacillus. Biol. Trace Elem. Res. 47: 379-383. https://doi.org/10.1007/BF02790140
  32. Chmielewski J, Tyflewska A. 2007. Selenium in microorganisms. pp. 54-68. In Wierzbicka M, Bulska E, Pyrzynska K, Wysocka I, Zachara BA (eds.), Selenium. The element essential to health and fascinating for researchers. Warsaw, Malamut.
  33. Galano E, Mangiapane E, Bianga J, Palmese A, Pessione E, Szpunar J, et al. 2013. Privileged incorporation of selenium as selenocysteine in Lactobacillus reuteri proteins demonstrated by selenium-specific imaging and proteomics. Mol. Cell Proteom. 12: 2196-2204. https://doi.org/10.1074/mcp.M113.027607
  34. Xu CL, Wang YZ, Jin ML, Yang XQ. 2009. Preparation, characterisation and immunomodulatory activity of selenium-enriched exopolysaccharide produced by bacterium Enterobacter cloacae Z0206. Bioresour Technol. 100: 2095-2097. https://doi.org/10.1016/j.biortech.2008.10.037
  35. Palomo M, Gutierrez AM, Perez-Conde MC, Camara C, Madrid Y. 2014. Se metallomics during lactic fermentation of Se-enriched yogurt. Food Chem. 164: 371-379. https://doi.org/10.1016/j.foodchem.2014.05.007
  36. Losi ME, Frankenberger WT. 1997. Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl. Environ. Microbiol. 63: 3079-3084.
  37. Dungan RS, Frankenberger-Jr WT. 2001. Biotransformations of selenium by Enterobacter cloacae SLD1a-1: formation of dimethylselenide. Biogeochemistry 55: 73-86. https://doi.org/10.1023/A:1010640307328
  38. Fesharaki PJ, Nazari P, Shakibaie M, Rezaie S, Banoee M, Abdollahi M, et al. 2010. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Braz. J. Microbiol. 41: 461-466. https://doi.org/10.1590/S1517-83822010000200028

Cited by

  1. Effect of Sodium Selenite, Selenium Yeast, and Bacterial Enriched Protein on Chicken Egg Yolk Color, Antioxidant Profiles, and Oxidative Stability vol.10, pp.4, 2017, https://doi.org/10.3390/foods10040871
  2. Effect of Selenium Sources on Laying Performance, Egg Quality Characteristics, Intestinal Morphology, Microbial Population and Digesta Volatile Fatty Acids in Laying Hens vol.11, pp.6, 2017, https://doi.org/10.3390/ani11061681