• 제목/요약/키워드: F-A-X

Search Result 3,243, Processing Time 0.031 seconds

Historical backgrounds of Quasi-F spaces and minimal quasi-F covers (Quasi-F 공간과 극소 Quasi-F cover의 역사적 배경)

  • Kim, Chang-Il
    • Journal for History of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.113-124
    • /
    • 2005
  • For a Tychonoff space X, C(X) is a Riesz-space. It is well known that C(X) is order-Cauchy complete if and only if X is a quasi~F space and that if X is a compact space and QF(X) is a minimal quasi-F cover of X, then the order- Cauchy completion of C(X) is isomorphic to C(QF(X)). In this paper, we investigate motivations and historical backgrounds of the definition for quasi-spaces and the construction for minimal quasi-F covers.

  • PDF

QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN BANACH SPACES: A FIXED POINT APPROACH

  • PARK, CHOONKIL;SEO, JEONG PIL
    • Korean Journal of Mathematics
    • /
    • v.23 no.2
    • /
    • pp.231-248
    • /
    • 2015
  • In this paper, we solve the following quadratic $\rho$-functional inequalities ${\parallel}f(\frac{x+y+z}{2})+f(\frac{x-y-z}{2})+f(\frac{y-x-z}{2})+f(\frac{z-x-y}{2})-f(x)-x(y)-f(z){\parallel}\;(0.1)\\{\leq}{\parallel}{\rho}(f(x+y+z+)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-f(z)){\parallel}$ where $\rho$ is a fixed complex number with ${\left|\rho\right|}<\frac{1}{8}$, and ${\parallel}f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z){\parallel}\;(0.2)\\{\leq}{\parallel}{\rho}(f(\frac{x+y+z}{2})+f(\frac{x-y-z}{2})+f(\frac{y-x-z}{2})+f(\frac{z-x-y}{2})-f(x)-f(y)-f(z)){\parallel}$ where $\rho$ is a fixed complex number with ${\left|\rho\right|}$ < 4. Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic $\rho$-functional inequalities (0.1) and (0.2) in complex Banach spaces.

FUNCTIONAL EQUATIONS IN THREE VARIABLES

  • Boo, Deok-Hoon;Park, Chun-Gil;Wee, Hee-Jung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.169-190
    • /
    • 2004
  • Let r, s be nonzero real numbers. Let X, Y be vector spaces. It is shown that if a mapping f : $X{\rightarrow}Y$ satisfies f(0) = 0, and $$sf(\frac{x+y{\pm}z}{r})+f(x)+f(y){\pm}f(z)=sf(\frac{x+y}{r})+sf(\frac{y{\pm}z}{r})+sf(\frac{x{\pm}z}{r})$$, or $$sf(\frac{x+y{\pm}y}{r})+f(x)+f(y){\pm}f(z)=f(x+y)+f(y{\pm}z)+f(x{\pm}z)$$ for all x, y, $z{\in}X$, then there exist an additive mapping A : $X{\rightarrow}Y$ and a quadratic mapping Q : $X{\rightarrow}Y$ such that f(x) = A(x) + Q(x) for all $x{\in}X$. Furthermore, we prove the Cauchy-Rassias stability of the functional equations as given above.

  • PDF

H-FUZZY SEMITOPOGENOUS PREOFDERED SPACES

  • Chung, S.H.
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.687-700
    • /
    • 1994
  • Throughout this paper we will let H denote the complete Heyting algebra ($H, \vee, \wedge, *$) with order reversing involution *. 0 and 1 denote the supermum and the infimum of $\emptyset$, respectively. Given any set X, any element of $H^X$ is called H-fuzzy set (or, simply f.set) in X and will be denoted by small Greek letters, such as $\mu, \nu, \rho, \sigma$. $H^X$ inherits a structure of H with order reversing involution in natural way, by definding $\vee, \wedge, *$ pointwise (sam notations of H are usual). If $f$ is a map from a set X to a set Y and $\mu \in H^Y$, then $f^{-1}(\mu)$ is the f.set in X defined by f^{-1}(\mu)(x) = \mu(f(x))$. Also for $\sigma \in H^X, f(\sigma)$ is the f.set in Y defined by $f(\sigma)(y) = sup{\sigma(x) : f(x) = y}$ ([4]). A preorder R on a set X is reflexive and transitive relation on X, the pair (X,R) is called preordered set. A map $f$ from a preordered set (X, R) to another one (Y,T) is said to be preorder preserving (inverting) if for $x,y \in X, xRy$ implies $f(x)T f(y) (resp. f(y)Tf(x))$. For the terminology and notation, we refer to [10, 11, 13] for category theory and [7] for H-fuzzy semitopogenous spaces.

  • PDF

Sedative Effect of Fentanyl-azaperone-xylazine in Cattle (소에서 Fentanyl-azaperone-xylazine의 진정효과)

  • 장광호
    • Journal of Veterinary Clinics
    • /
    • v.14 no.2
    • /
    • pp.151-160
    • /
    • 1997
  • This study was performed to assess clinical signs, sedative and physiologic effects of a combination of fentanyl, azaperone and xylazine (F-A-X). The experiments were divided into four groups; xylazine 0.1mg/kg (X 0.1), F-A-X 0.05 MG/KG (F-A-X 0.05), F-A-X 0.1 MG/KG (F-A-X 0.1) and F-A-X 0.2mg/kg (F-A-X 0.2). Heart rates were decreased in all groups. Respiratory rates were decreased in other groups, but increased in F-A-X 0.2. Body temperatures were in normal ranges. After administration of F-A-X, most of cattle were recumbency and did not respond to needle prick. Duration of sedation was prolonged with increasing dosages. F-A-X did not induce sufficient analgesia for dehorning. Side effects were salivation and urination in all, but they were much less in F-A-X groups than those in X 0.1. Intermittent apnea and bloat were observed in F-A-X 0.2. Serum chemistry values were in normal ranges exvept for hyperglycemia invreased thorough experimental time. Based on above results, it may be concluded that F-A-X is effective preanesthetic with low dosage of 0.05~0.1 mg/kg being useful for immobilization or manipulation without tissue incision in cattle.

  • PDF

ADDITIVE-QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN FUZZY NORMED SPACES

  • YUN, SUNGSIK;LEE, JUNG RYE;SHIN, DONG YUN
    • The Pure and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.247-263
    • /
    • 2016
  • Let $M_{1}f(x,y):=\frac{3}{4}f(x+y)-\frac{1}{4}f(-x-y)+\frac{1}{4}f(x-y)+\frac{1}{4}f(y-x)-f(x)-f(y)$, $M_{2}f(x,y):=2f(\frac{x+y}{2})+f(\frac{x-y}{2})+f(\frac{y-x}{2})-f(x)-f(y)$. Using the direct method, we prove the Hyers-Ulam stability of the additive-quadratic ρ-functional inequalities (0.1) $N(M_{1}f(x,y),t){\geq}N({\rho}M_{2}f(x,y),t)$ where ρ is a fixed real number with |ρ| < 1, and (0.2) $N(M_{2}f(x,y),t){\geq}N({\rho}M_{1}f(x,y),t)$ where ρ is a fixed real number with |ρ| < $\frac{1}{2}$.

A FIXED POINT APPROACH TO THE STABILITY OF THE QUADRATIC AND QUARTIC TYPE FUNCTIONAL EQUATIONS

  • Jin, Sun-Sook;Lee, Yang-Hi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.337-347
    • /
    • 2019
  • In this paper, we investigate the generalized Hyers-Ulam stability of the quadratic and quartic type functional equations $$f(kx+y)+f(kx-y)-k^2f(x+y)-k^2f(x-y)-2f(kx)\\{\hfill{67}}+2k^2f(x)+2(k^2-1)f(y)=0,\\f(x+5y)-5f(x+4y)+10f(x+3y)-10f(x+2y)+5f(x+y)\\{\hfill{67}}-f(-x)=0,\\f(kx+y)+f(kx-y)-k^2f(x+y)-k^2f(x-y)\\{\hfill{67}}-{\frac{k^2(k^2-1)}{6}}[f(2x)-4f(x)]+2(k^2-1)f(y)=0$$ by using the fixed point theory in the sense of L. $C{\breve{a}}dariu$ and V. Radu.

LOCAL PERMUTATION POLYNOMIALS OVER FINITE FIELDS

  • Lee, Jung-Bok;Ko, Hyoung-June
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.539-545
    • /
    • 1994
  • Let $q = p^r$, where p is a prime. A polynomial $f(x) \in GF(q)[x]$ is called a permutation polynomial (PP) over GF(q) if the numbers f(a) where $a \in GF(Q)$ are a permutation of the a's. In other words, the equation f(x) = a has a unique solution in GF(q) for each $a \in GF(q)$. More generally, $f(x_1, \cdots, x_n)$ is a PP in n variables if $f(x_1,\cdots,x_n) = \alpha$ has exactly $q^{n-1}$ solutions in $GF(q)^n$ for each $\alpha \in GF(q)$. Mullen ([3], [4], [5]) has studied the concepts of local permutation polynomials (LPP's) over finite fields. A polynomial $f(x_i, x_2, \cdots, x_n) \in GF(q)[x_i, \codts,x_n]$ is called a LPP if for each i = 1,\cdots, n, f(a_i,\cdots,x_n]$ is a PP in $x_i$ for all $a_j \in GF(q), j \neq 1$.Mullen ([3],[4]) found a set of necessary and three variables over GF(q) in order that f be a LPP. As examples, there are 12 LPP's over GF(3) in two indeterminates ; $f(x_1, x_2) = a_{10}x_1 + a_{10}x_2 + a_{00}$ where $a_{10} = 1$ or 2, $a_{01} = 1$ or x, $a_{00} = 0,1$, or 2. There are 24 LPP's over GF(3) of three indeterminates ; $F(x_1, x_2, x_3) = ax_1 + bx_2 +cx_3 +d$ where a,b and c = 1 or 2, d = 0,1, or 2.

  • PDF

ON THE PETTIS INTEGRABILITY

  • Kim, Jin Yee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.8 no.1
    • /
    • pp.111-117
    • /
    • 1995
  • A function $f:{\Omega}{\rightarrow}X$ is called intrinsically-separable valued if there exists $E{\in}{\Sigma}$ with ${\mu}(E)=0$ such that $f({\Omega}-E)$ is a separable in X. For a given Dunford integrable function $f:{\Omega}{\rightarrow}X$ and a weakly compact operator T, we show that if f is intrinsically-separable valued, then f is Pettis integrable, and if there exists a sequence ($f_n$) of Dunford integrable and intrinsically-separable valued functions from ${\Omega}$ into X such that for each $x^*{\in}X^*$, $x^*f_n{\rightarrow}x^*f$ a.e., then f is Pettis integrable. We show that a function f is Pettis integrable if and only if for each $E{\in}{\Sigma}$, F(E) is $weak^*$-continuous on $B_{X*}$ if and only if for each $E{\in}{\Sigma}$, $M=\{x^*{\in}X^*:F(E)(x^*)=O\}$ is $weak^*$-closed.

  • PDF

Study of Generalized Derivations in Rings with Involution

  • Mozumder, Muzibur Rahman;Abbasi, Adnan;Dar, Nadeem Ahmad
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • Let R be a prime ring with involution of the second kind and centre Z(R). Suppose R admits a generalized derivation $F:R{\rightarrow}R$ associated with a derivation $d:R{\rightarrow}R$. The purpose of this paper is to study the commutativity of a prime ring R satisfying any one of the following identities: (i) $F(x){\circ}x^*{\in}Z(R)$ (ii) $F([x,x^*]){\pm}x{\circ}x^*{\in}Z(R)$ (iii) $F(x{\circ}x^*){\pm}[x,x^*]{\in}Z(R)$ (iv) $F(x){\circ}d(x^*){\pm}x{\circ}x^*{\in}Z(R)$ (v) $[F(x),d(x^*)]{\pm}x{\circ}x^*{\in}Z(R)$ (vi) $F(x){\pm}x{\circ}x^*{\in}Z(R)$ (vii) $F(x){\pm}[x,x^*]{\in}Z(R)$ (viii) $[F(x),x^*]{\mp}F(x){\circ}x^*{\in}Z(R)$ (ix) $F(x{\circ}x^*){\in}Z(R)$ for all $x{\in}R$.