Browse > Article
http://dx.doi.org/10.11568/kjm.2015.23.2.231

QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN BANACH SPACES: A FIXED POINT APPROACH  

PARK, CHOONKIL (Research Institute for Natural Sciences Hanyang University)
SEO, JEONG PIL (Ohsang High School)
Publication Information
Korean Journal of Mathematics / v.23, no.2, 2015 , pp. 231-248 More about this Journal
Abstract
In this paper, we solve the following quadratic $\rho$-functional inequalities ${\parallel}f(\frac{x+y+z}{2})+f(\frac{x-y-z}{2})+f(\frac{y-x-z}{2})+f(\frac{z-x-y}{2})-f(x)-x(y)-f(z){\parallel}\;(0.1)\\{\leq}{\parallel}{\rho}(f(x+y+z+)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-f(z)){\parallel}$ where $\rho$ is a fixed complex number with ${\left|\rho\right|}<\frac{1}{8}$, and ${\parallel}f(x+y+z)+f(x-y-z)+f(y-x-z)+f(z-x-y)-4f(x)-4f(y)-4f(z){\parallel}\;(0.2)\\{\leq}{\parallel}{\rho}(f(\frac{x+y+z}{2})+f(\frac{x-y-z}{2})+f(\frac{y-x-z}{2})+f(\frac{z-x-y}{2})-f(x)-f(y)-f(z)){\parallel}$ where $\rho$ is a fixed complex number with ${\left|\rho\right|}$ < 4. Using the fixed point method, we prove the Hyers-Ulam stability of the quadratic $\rho$-functional inequalities (0.1) and (0.2) in complex Banach spaces.
Keywords
Hyers-Ulam stability; quadratic $\rho$-functional equation; fixed point; complex Banach space;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.   DOI
2 L. Cadariu, V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4, no. 1, Art. ID 4 (2003).
3 L. Cadariu, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber. 346 (2004), 43-52.
4 L. Cadariu, V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Applications 2008, Art. ID 749392 (2008).
5 P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.   DOI
6 J. Diaz, B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309.   DOI
7 W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), 149-161.   DOI
8 P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-43.   DOI   ScienceOn
9 A. Gilanyi, Eine zur Parallelogrammgleichung aquivalente Ungleichung, Aequationes Math. 62 (2001), 303-309.   DOI
10 A. Gilanyi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002), 707-710.
11 D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.   DOI   ScienceOn
12 G. Isac, Th. M. Rassias, Stability of $\psi$-additive mappings: Appications to nonlinear analysis, Internat. J. Math. Math. Sci. 19 (1996), 219-228.   DOI   ScienceOn
13 D. Mihet, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), 567-572.   DOI   ScienceOn
14 C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory and Applications 2007, Art. ID 50175 (2007).
15 C. Park, Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach, Fixed Point Theory and Applications 2008, Art. ID 493751 (2008).
16 C. Park, Y. Cho, M. Han, Functional inequalities associated with Jordan-von Neumann-type additive functional equations, J. Inequal. Appl. 2007 (2007), Article ID 41820, 13 pages.
17 Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.   DOI   ScienceOn
18 F. Skof, Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129.   DOI
19 V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91-96.
20 J. Ratz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), 191-200.   DOI
21 S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960.