ON THE PETTIS INTEGRABILITY

JIN YEE KIM

ABSTRACT. A function $f : \Omega \to X$ is called *intrinsically-separable* valued if there exists $E \in \Sigma$ with $\mu(E) = 0$ such that $f(\Omega - E)$ is a separable in X. For a given Dunford integrable function $f : \Omega \to X$ and a weakly compact operator T, we show that if f is intrinsicallyseparable valued, then f is Pettis integrable, and if there exists a sequence (f_n) of Dunford integrable and intrinsically-separable valued functions from Ω into X such that for each $x^* \in X^*$, $x^* f_n \to x^* f$ a.e., then f is Pettis integrable. We show that a function f is Pettis integrable if and only if for each $E \in \Sigma$, F(E) is weak*-continuous on B_{X^*} if and only if for each $E \in \Sigma$, $M = \{x^* \in X^* : F(E)(x^*) = 0\}$ is weak*-closed.

1. Introduction

In [6], R. Huff investigates the Pettis integrability with respect to complete probability space. In this paper, we generalize the ideas put forth in [5] and [6].

Let us fix some terminology and notation. Let X be a real Banach space with continuous dual X^* and the closed unit ball of X^* will be denoted by B_X . Throughout, (Ω, Σ, μ) will denote a finite measure space.

A function $f: \Omega \to X$ is *Pettis integrable* if

(a) f is weakly μ -measurable and weakly μ -integrable, and

(b) for every $E \in \Sigma$, there exists an $x_E \in X$ such that

$$x^*(x_E) = \int_E x^* f \, d\mu$$

Received by the editors on June 30, 1995.

1991 Mathematics subject classifications: Primary 28B20.

for every $x^* \in X^*$

By the closed graph theorem, $T: X^* \to L^1(\mu)$ is bounded linear operator. Hence, if T^* denotes the adjoint of T, then we can define $T^*: L^{\infty}(\mu) \to X^{**}$ by

$$T_g^*(x^*) = \int_{\Omega} gT(x^*) \, d\mu = \int_{\Omega} gx^* f d\mu$$

for every $g \in L^{\infty}(\mu)$. In particular, define $F: \Sigma \to X^{**}$ by

$$F(E) = (D) - \int_E f \, d\mu$$

for each $E \in \Sigma$, and $F(E) = T^*_{\mathcal{X}_E}$ is called the *Dunford integral* of f over E. In the case that $F(E) \in X$ for each $E \in \Sigma$, we write $F(E) = (P) - \int_E f \, d\mu$ and it is called the Pettis integral of f over E.

The function F is not necessarily countably additive. It can be shown that F is countably additive if and only if T is a weakly compact operator if and only if $\{x^*f : x^* \in B_X\}$ is uniformly integrable in $L^1(\mu)$.

2. Pettis Integrability

A weakly measurable function $f: \Omega \to X$ is separable-like if there exists a separable subspace D of X such that for every $x^* \in X^*$,

$$x^*|_D f = x^* f$$
 μ -a.e..

In [6], R. Huff defined such function separable-like. This property of the function f is generalized in the following definition.

DEFINITION 2.1. A function $f: \Omega \to X$ is said to be *intrinsically-separable valued* if there exists $E \in \Sigma$ with $\mu(E) = 0$ such that $f(\Omega - E)$ is a separable subset in X.

In Particular, if f be a weakly measurable, then it is separable-like.

EXAMPLE 2.2. (a) Let f be a simple function. Then f is intrinsicallyseparable valued since f is strongly measurable function.

(b) There exists a function $f: \Omega \to X$ such that $x^*f = 0$ a.e., but f is not intrinsically-separable valued. [7, Example 9].

PROPOSITION 2.3[6, Corollary 4]. Let f be Dunford integrable and T is weakly compact. If f is separable-like, then it is Pettis integrable.

The next two Theorems give a sufficient condition for the Pettis integrable.

THEOREM 2.4. Let $f: \Omega \to X$ be Dunford integrable and T be a weakly compact. If f is intrinsically-separable valued, then f is Pettis integrable.

PROOF. Suppose that f is intrinsically-separable valued. Since f is weakly measurable, f is separable-like. By Proposition 2.3., f is Pettis integrable.

By [2, Theorem 8, p.55] and [5, Theorem 3], we obtain the following proposition.

PROPOSITION 2.5. Let $f: \Omega \to X$. If there is a sequence (f_n) of Pettis integrable functions from Ω into X such that for each $x^* \in X^*$, $\lim_{n\to\infty} x^* f_n = x^* f \ \mu$ -a.e., then f is Pettis integrable.

THEOREM 2.6. Let f be Dunford integrable and T be a weakly compact. If there exists a sequence (f_n) of Dunford integrable and intrinsically-separable valued functions from Ω into X such that for each $x^* \in X^*$, $x^*f_n \to x^*f$ a.e., then f is Pettis integrable.

PROOF. By hypothesis and Theorem 2.4., (f_n) is a sequence of Pettis integrable functions from Ω into X such that for each $x^* \in X^*$, $x^*f_n \to x^*f$ a.e.. Then, by Proposition 2.5, f is Pettis integrable.

From the above two Theorems, we obtain the following Corollaries.

COROLLARY 2.7. Let $f: \Omega \to X^{**}$ be Dunford integrable, X be a reflexive, and T be a weakly compact. If f is intrinsically-separable valued, then f is Pettis integrable.

COROLLARY 2.8. Let $f: \Omega \to X^{**}$ be Dunford integrable, X be a reflexive, and T be a weakly compact. If there exists a sequence (f_n) of Dunford integrable and intrinsically-separable valued functions from Ω into X^{**} such that for each $x^* \in X^*$, $x^*f_n \to x^*f$ a.e., then f is Pettis integrable.

3. Properties of The Pettis Integrability

In a real Banach space X, if X is reflexive, then $X^{**} = X$. And so, we have the following theorems.

THEOREM 3.1. Let $T: X^* \to L^1(\mu)$ be a weakly compact operator and X be a reflexive. Then F has a relatively weakly compact range.

PROOF. Since T be a weakly compact, $F : \Sigma \to X^{**}$ is a countably additive vector measure., say $F : \Sigma \to X$. Then there exist a $\mu : \Sigma \to$ $[0, \infty)$ be a countably additive measure such that $F \ll \mu$. Define $T^* : L^{\infty}(\mu) \to X$ by

$$T_g^* = \int g \, dF$$

for every $g \in L^{\infty}(\mu)$.

Since $x^*F \ll \mu$ for each $x^* \in X^*$, there exists an $f_{x^*} \in \mathcal{L}(\Omega, \Sigma, \mu, \mathbb{R})$ such that

$$x^*F(E) = \int_E f_{x^*} \, d\mu$$

for each $E \in \Sigma$.

Hence, for each $x^* \in X^*$, there exists an $dx^*F/d\mu = f_{x^*} \in L^1(\mu)$ is the Radon - Nikodym derivative of x^*F with respect to μ such that

$$x^*T_g^* = \int g \, dx^*F = \int g \frac{dx^*F}{d\mu} \, d\mu = \int g f_{x^*} \, d\mu.$$

If (g_{α}) is a net in $L^{\infty}(\mu)$ converging weak^{*} to g_0 , then, for each $x^* \in X^*$,

$$\lim_{\alpha} x^* T_{g_{\alpha}}^* = \lim_{\alpha} \int g_{\alpha} f_{x^*} d\mu$$
$$= \int g_0 f_{x^*} d\mu$$
$$= x^* T_{g_0}^*,$$

i.e., $(T_{g_{\alpha}}^{*})$ converges weakly to $T_{g_{0}}^{*}$. Hence T^{*} is a weak*-weak continuous.

Note that $\{g \in L^{\infty}(\mu) : \|g\|_{\infty} \leq 1\}$ is weak*-compact. Since T^* is a continuous, $T^*(\{g \in L^{\infty}(\mu) : \|g\|_{\infty} \leq 1\})$ is a compact in X. But $\{F(E) : E \in \Sigma\} = \{T^*_{\chi_E} : E \in \Sigma\} \subseteq \{T^*_g : \|g\|_{\infty} \leq 1\}$ and so $\overline{\{F(E) : E \in \Sigma\}} \subseteq T^*(\{g \in L^{\infty}(\mu) : \|g\|_{\infty} \leq 1\}).$

THEOREM 3.2. Let $f : \Omega \to X$ be a measurable, T be a weakly compact, and X be a reflexive. Then f is Pettis integrable.

PROOF. Since T is a weakly compact and X is a reflexive, F has a relatively weakly compact range by Theorem 3.1.. Therefore f is Pettis integrable by [2, Corollary 9, p. 56].

The following results give necessary and sufficient conditions for the Pettis integrable.

THEOREM 3.3. Let $f : \Omega \to X$ be Dunford integrable. Then the following statements are equivalent:

- (a) f is Pettis integrable
- (b) For each E ∈ Σ, there exists x_E ∈ X such that F(E)(x*) = x*(x_E) for every x* ∈ X*, i.e., F(E) ∈ X.
- (c) For each $E \in \Sigma$, F(E) is weak*-continuous on B_X .
- (d) For each $E \in \Sigma$, $M = \{x^* \in X^* : F(E)(x^*) = 0\}$ is weak*-closed.

JIN YEE KIM

PROOF. (a) \iff (b). Since f is Pettis integrable, for each $E \in \Sigma$, we can define $F(E)(x^*) = T^*_{\chi_E}(x^*)$, for every $x^* \in X^*$. Since, for each $E \in \Sigma$,

$$T^*_{\chi_E}(x^*) = \int_E x^* f \, d\mu$$

is in X, there exists $x_E \in X$ such that $x^*(x_E) = \int_E x^* f \, d\mu$ for every $x^* \in X^*$.

It is trivial that (b) implies (c).

(c) \implies (d). Since $F(E)(M) = \{0\}$, for each $E \in \Sigma$, and $\{0\}$ is closed in \mathbb{R} , $F(E)^{-1}(\{0\}) = M$ is weak*-closed by hypothesis.

(d) \Longrightarrow (b). Suppose that $M = \{x^* \in X^* : F(E)(x^*) = 0\}$, for each $E \in \Sigma$, is weak*-closed. We will show that, for each $E \in \Sigma$, there exists an element $x_E \in X$ such that $F(E)(x^*) = x^*(x_E)$ for every $x^* \in X^*$, and hence f is Pettis integrable. For each $E \in \Sigma$, define $F(E)(x^*) = \int_E x^* f \, d\mu$. We may assume that $M \neq X^*$. Otherwise we can take $x_E = 0$. Let $x_0^* \in X^*$ with $F(E)(x_0^*) = 1$. Then there exists an $x_E \in X$ such that $x_0^*(x_E) = 1$ and $x^*(x_E) = 0$ for every $x^* \in M$. Hence, for each $x^* \in X^*$, $x^* - F(E)(x^*)x_0^* = y^* \in X^*$ satisfies $F(E)(y^*) = 0$, *i.e.*, $y^* \in M$. Therefore $F(E)(x^*) = x^*(x_E)$.

As a Corollary of Theorem 3.3., we find the next Corollary.

COROLLARY 3.4. Let f be Dunford integrable. Then the following statements are equivalent:

- (a) f is Pettis integrable
- (b) For each $E \in \Sigma$, $T^*_{\chi_E}$ is in X
- (c) For each $E \in \Sigma$, F(E) restricted on B_{X^*} is weak*-continuous at 0.

References

1. J. Diestel, Sequences and Series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, 1984.

116

- 2. J. Diestel, and J. J. Uhl, Jr., Vector Measures, Math. Surveys, no.15, A.M.S., 1977.
- 3. M. Talagrand, Pettis integrable and measure theory, Mem. Amer. Math. Soc. 307 (1984).
- 4. N. Dunford and J. T. Schwartz, *Linear operators. Part I General theory*, Interscience, New York, 1967.
- 5. R. F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), 81-86.
- 6. R. Huff, Remarks on Pettis integrability, Proc. Amer. Math. Soc. 96 (1986), 402-403.
- S. H. Lee, J. Y. Kim and M. H. Kim, A Characteization of The Strong Measurability via Oscillation, Chungcheong Math. Soc. 7 (1994), 59-67.

DEPARTMENT OF MATHEMATICS CHUNGBUK NATIONAL UNIVERSITY CHEONGJU 360-763, KOREA