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QUADRATIC ρ-FUNCTIONAL INEQUALITIES IN

BANACH SPACES: A FIXED POINT APPROACH

Choonkil Park and Jeong Pil Seo∗

Abstract. In this paper, we solve the following quadratic ρ-functional
inequalities∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y − z
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)
+ f

(
y − x− z

2

)
+f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

∥∥∥∥ (0.1)

≤ ‖ρ(f(x+ y + z) + f(x− y − z) + f(y − x− z)
+f(z − x− y)− 4f(x)− 4f(y)− 4f(z))‖,

where ρ is a fixed complex number with |ρ| < 1
8 , and

‖f(x+ y + z) + f(x− y − z) + f(y − x− z)
+f(z − x− y)− 4f(x)− 4f(y)− 4f(z)‖ (0.2)

≤
∥∥∥∥ρ(f (x+ y + z

2

)
+ f

(
x− y − z
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)
+ f

(
y − x− z

2

)
+f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

)∥∥∥∥ ,
where ρ is a fixed complex number with |ρ| < 4.

Using the fixed point method, we prove the Hyers-Ulam stability
of the quadratic ρ-functional inequalities (0.1) and (0.2) in complex
Banach spaces.
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1. Introduction and preliminaries

The stability problem of functional equations originated from a ques-
tion of Ulam [21] concerning the stability of group homomorphisms.
Hyers [11] gave a first affirmative partial answer to the question of Ulam
for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for ad-
ditive mappings and by Rassias [17] for linear mappings by considering
an unbounded Cauchy difference. A generalization of the Rassias the-
orem was obtained by Găvruta [8] by replacing the unbounded Cauchy
difference by a general control function in the spirit of Rassias’ approach.

The functional equation f(x+ y) + f(x− y) = 2f(x) + 2f(y) is called
the quadratic functional equation. In particular, every solution of the
quadratic functional equation is said to be a quadratic mapping. The
stability of quadratic functional equation was proved by Skof [20] for
mappings f : E1 → E2, where E1 is a normed space and E2 is a Banach
space. Cholewa [5] noticed that the theorem of Skof is still true if the
relevant domain E1 is replaced by an Abelian group.

The functional equation

2f

(
x+ y

2

)
+ 2

(
x− y

2

)
= f(x) + f(y)

is called a Jensen type quadratic equation.
In [9], Gilányi showed that if f satisfies the functional inequality

‖2f(x) + 2f(y)− f(xy−1)‖ ≤ ‖f(xy)‖ (1.1)

then f satisfies the Jordan-von Neumann functional equation

2f(x) + 2f(y) = f(xy) + f(xy−1).

See also [19]. Gilányi [10] and Fechner [7] proved the Hyers-Ulam sta-
bility of the functional inequality (1.1). Park, Cho and Han [16] proved
the Hyers-Ulam stability of additive functional inequalities.

We recall a fundamental result in fixed point theory.

Theorem 1.1. [2,6] Let (X, d) be a complete generalized metric space
and let J : X → X be a strictly contractive mapping with Lipschitz
constant α < 1. Then for each given element x ∈ X, either

d(Jnx, Jn+1x) =∞
for all nonnegative integers n or there exists a positive integer n0 such
that
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(1) d(Jnx, Jn+1x) <∞, ∀n ≥ n0;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set

Y = {y ∈ X | d(Jn0x, y) <∞};
(4) d(y, y∗) ≤ 1

1−αd(y, Jy) for all y ∈ Y .

In 1996, G. Isac and Th.M. Rassias [12] were the first to provide ap-
plications of stability theory of functional equations for the proof of new
fixed point theorems with applications. By using fixed point methods,
the stability problems of several functional equations have been exten-
sively investigated by a number of authors (see [3, 4, 14,15,18]).

This paper is organized as follows: In Section 2, we investigate qua-
dratic functional equations.

In Section 3, we solve the quadratic ρ-functional inequality (0.1) and
prove the Hyers-Ulam stability of the quadratic ρ-functional inequality
(0.1) in complex Banach spaces.

In Section 4, we solve the quadratic ρ-functional inequality (0.2) and
prove the Hyers-Ulam stability of the quadratic ρ-functional inequality
(0.2) in complex Banach spaces.

Throughout this paper, assume that X is a complex normed space
and that Y is a complex Banach space.

2. Quadratic functional equation

Theorem 2.1. Let X and Y be vector spaces. A mapping f : X → Y
satisfies

f

(
x+ y + z

2
+
x− y − z

2
+
y − x− z

2
+
z − x− y

2

)
(2.1)

= f(x) + f(y) + f(z)

if and only if the mapping f : X → Y is a quadratic mapping.

Proof. Sufficiency. Assume that f : X → Y satisfies (2.1)
Letting x = y = z = 0 in (2.1), we have 4f(0) = 3f(0). So f(0) = 0.
Letting y = z = 0 in (2.1), we get

2f
(x

2

)
+ 2f

(
−x

2

)
= f(x), (2.2)

2f
(
−x

2

)
+ 2f

(x
2

)
= f(−x)
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for all x ∈ X, which imply that f(x) = f(−x) for all x ∈ X.
From this and (2.2), we obtain 4f

(
x
2

)
= f(x) or f(2x) = 4f(x) for

all x ∈ X.
Putting z = 0 in (2.1), we obtain

1

2
f(x+ y) +

1

2
f(x− y) = f(x) + f(y)

for all x, y ∈ X, which means that f : X → Y is a quadratic mapping.
Necessity. Assume that f : X → Y is quadratic.
By f(x+ y) + f(x− y) = 2f(x) + 2f(y), one can easily get f(0) = 0,

f(x) = f(−x) and f(2x) = 4f(x) for all x ∈ X. So

f
(x+ y + z

2

)
+ f
(x− y − z

2

)
+ f
(y − x− z

2

)
+ f
(z − x− y

2

)
=
[
2f
(x

2

)
+ 2f

(y + z

2

)]
+
[
2f
(
− x

2

)
+ 2f

(y − z
2

)]
= 4f

(x
2

)
+ f
(y + z + y − z

2

)
+ f
(y + z − y + z

2

)
= f(x) + f(y) + f(z)

for all x, y, z ∈ X, which is the functional equation (2.1) and the proof
is complete.

Corollary 2.2. Let X and Y be vector spaces. An even mapping
f : X → Y satisfies

f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y) (2.3)

= 4f(x) + 4f(y) + 4f(z)

for all x, y, z ∈ X. Then the mapping f : X → Y is a quadratic mapping.

Proof. Assume that f : X → Y satisfies (2.3)
Letting x = y = z = 0 in (2.3), we have 4f(0) = 12f(0). So f(0) = 0.
Letting z = 0 in (2.3), we get

2f(x+ y) + 2f(x− y) = 4f(x) + 4f(y)

and so f(x+ y) + f(x− y) = 2f(x) + 2f(y) for all x, y ∈ X.

3. Quadratic ρ-functional inequality (0.1)

Throughout this section, assume that ρ is a fixed complex number
with |ρ| < 1

8
.
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In this section, we solve and investigate the quadratic ρ-functional
inequality (0.1) in complex normed spaces.

Lemma 3.1. An even mapping f : X → Y satisfies∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

∥∥∥∥
≤ ‖ρ(f(x+ y + z) + f(x− y − z) + f(y − x− z) (3.1)

+f(z − x− y)− 4f(x)− 4f(y)− 4f(z))‖

for all x, y, z ∈ X if and only if f : X → Y is quadratic.

Proof. Assume that f : X → Y satisfies (3.1).
Letting x = y = z = 0 in (3.1), we get ‖f(0)‖ ≤ |ρ|‖8f(0)‖. So

f(0) = 0.
Letting y = z = 0 in (3.1), we get

‖4f
(x

2

)
− f(x)‖ ≤ 0

and so 4f(x
2
) = f(x) for all x ∈ X. Thus

f
(x

2

)
=

1

4
f(x) (3.2)

for all x ∈ X.
It follows from (3.1) and (3.2) that∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

∥∥∥∥
≤ ‖ρ(f(x+ y + z) + f(x− y − z) + f(y − x− z)

+f(z − x− y)− 4f(x)− 4f(y)− 4f(z))‖

= |ρ|
∥∥∥∥4f

(
x+ y + z

2

)
+ 4f

(
x− y − z

2

)
+ 4f

(
y − x− z

2

)
+4f

(
z − x− y

2

)
− 4f(x)− 4f(y)− 4f(z)

∥∥∥∥



236 C. Park and J. P. Seo

≤ 4|ρ|
∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

∥∥∥∥
and so

f

(
x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
= f(x) + f(y) + f(z)

for all x, y, z ∈ X, since |ρ| < 1
8
< 1

4
.

The converse is obviously true.

We prove the Hyers-Ulam stability of the quadratic ρ-functional in-
equality (3.1) in complex Banach spaces.

Theorem 3.2. Let ϕ : X3 → [0,∞) be a function with ϕ(0, 0, 0) = 0
such that there exists an L < 1 with

ϕ
(x

2
,
y

2
,
z

2

)
≤ L

4
ϕ (x, y, z) (3.3)

for all x, y, z ∈ X. Let f : X → Y be an even mapping such that∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+f

(
z − x− y

2

)
− f(x)− f(y)− f(z)‖

≤ ‖ρ(f(x+ y + z) + f(x− y − z) + f(y − x− z) (3.4)

+f(z − x− y)− 4f(x)− 4f(y)− 4f(z))‖+ ϕ(x, y, z)

for all x, y, z ∈ X. Then there exists a unique quadratic mapping Q :
X → Y such that

‖f(x)−Q(x)‖ ≤ 1

1− L
ϕ (x, 0, 0) (3.5)

for all x ∈ X.

Proof. Letting x = y = z = 0 in (3.4), we get ‖f(0)‖ ≤ |ρ|‖8f(0)‖.
So f(0) = 0.

Letting y = z = 0 in (3.4), we get∥∥∥4f
(x

2

)
− f(x)

∥∥∥ ≤ ϕ(x, 0, 0) (3.6)
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for all x ∈ X.
Consider the set

S := {h : X → Y, h(0) = 0}
and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µϕ (x, 0, 0) , ∀x ∈ X} ,
where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete
(see [13]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 4g
(x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

‖g(x)− h(x)‖ ≤ εϕ (x, 0, 0)

for all x ∈ X. Hence

‖Jg(x)− Jh(x)‖ =
∥∥∥4g

(x
2

)
− 4h

(x
2

)∥∥∥ ≤ 4εϕ
(x

2
, 0, 0

)
≤ 4ε

L

4
ϕ (x, 0, 0) ≤ Lεϕ (x, 0, 0)

for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means
that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (3.6) that d(f, Jf) ≤ 1.
By Theorem 1.1, there exists a mapping Q : X → Y satisfying the

following:
(1) Q is a fixed point of J , i.e.,

Q (x) = 4Q
(x

2

)
(3.7)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.
This implies that Q is a unique mapping satisfying (3.7) such that there
exists a µ ∈ (0,∞) satisfying

‖f(x)−Q(x)‖ ≤ µϕ (x, 0, 0)

for all x ∈ X;
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(2) d(J lf,Q)→ 0 as l→∞. This implies the equality

lim
l→∞

4nf
( x

2n

)
= Q(x)

for all x ∈ X;

(3) d(f,Q) ≤ 1
1−Ld(f, Jf), which implies the inequality

d(f,Q) ≤ 1

1− L
.

So

‖f(x)−Q(x)‖ ≤ 1

1− L
ϕ(x, 0, 0)

for all x ∈ X.

It follows from (3.3) and (3.4) that∥∥∥∥Q(x+ y + z

2

)
+Q

(
x− y − z

2

)
+Q

(
y − x− z

2

)
+Q

(
z − x− y

2

)
−Q(x)−Q(y)−Q(z)

∥∥∥∥
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n→∞
4n
∥∥∥∥f (x+ y + z
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)
+ f

(
x− y − z
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)
+ f

(
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)
+f

(
z − x− y
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)
− f

( x
2n

)
− f

( y
2n

)
− f

( z
2n

)∥∥∥∥
≤ lim

n→∞
4n|ρ|

∥∥∥∥f (x+ y + z

2n

)
+ f

(
x− y − z

2n

)
+ f

(
y − x− z

2n

)
+f

(
z − x− y

2n

)
− 4f

( x
2n

)
− 4f

( y
2n

)
− 4f

( z
2n

)∥∥∥∥
+ lim

n→∞

1

4n
ϕ
( x

2n
,
y

2n
,
z

2n

)
= ‖ρ(Q(x+ y + z) +Q(x− y − z) +Q(y − x− z) +Q(z − x− y)

−4Q(x)− 4Q(y)− 4Q(z))‖
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for all x, y, z ∈ X. So∥∥∥∥Q(x+ y + z

2

)
+Q

(
x− y − z

2

)
+Q

(
y − x− z

2

)
+Q

(
z − x− y

2

)
−Q(x)−Q(y)−Q(z)‖

≤ ‖ρ(Q(x+ y + z) +Q(x− y − z) +Q(y − x− z) +Q(z − x− y)

−4Q(x)− 4Q(y)− 4Q(z))‖
for all x, y, z ∈ X. By Lemma 3.1, the mapping Q : X → Y is quadratic.

Now, let T : X → Y be another quadratic mapping satisfying (3.5).
Then we have

‖Q(x)− T (x)‖ =
∥∥∥4qQ

( x
2q

)
− 4qT

( x
2q

)∥∥∥
≤ max

{∥∥∥4qQ
( x

2q

)
− 4qf

( x
2q

)∥∥∥ ,∥∥∥4qT
( x

2q

)
− 4qf

( x
2q

)∥∥∥}
≤ lim

n→∞

1

4n
ϕ
( x

2n
, 0, 0

)
,

which tends to zero as q → ∞ for all x ∈ X. So we can conclude that
Q(x) = T (x) for all x ∈ X. This proves the uniqueness of Q. Thus the
mapping Q : X → Y is a unique quadratic mapping satisfying (3.5).

Corollary 3.3. Let r > 2 and θ be nonnegative real numbers, and
let f : X → Y be an even mapping such that∥∥∥∥f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+ f

(
z − x− y

2

)
−f(x)− f(y)− f(z)‖ (3.8)

≤ ‖ρ(f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)

−4f(x)− 4f(y)− 4f(z))‖+ θ(‖x‖r + ‖y‖r + ‖z‖r)
for all x, y, z ∈ X. Then there exists a unique quadratic mapping Q :
X → Y such that

‖f(x)−Q(x)‖ ≤ 2rθ

2r − 4
‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 3.2 by taking ϕ(x, y, z) =
θ(‖x‖r + ‖y‖r + ‖z‖r) for all x, y, z ∈ X. Then we can choose L = 22−r

and we get desired result.
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Theorem 3.4. Let ϕ : X3 → [0,∞) be a function with ϕ(0, 0, 0) = 0
such that there exists an L < 1 with

ϕ (x, y, z) ≤ 4Lϕ
(x

2
,
y

2
,
z

2

)
for all x, y, z ∈ X Let f : X → Y be an even mapping satisfying (3.4).
Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ L

1− L
ϕ (x, 0, 0)

for all x ∈ X.

Proof. It follows from (3.6) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

4
ϕ(2x, 0, 0) ≤ Lϕ(x, 0, 0) (3.9)

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of

Theorem 3.2.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

4
g (2x)

for all x ∈ X.
It follows from (3.9) that d(f, Jf) ≤ L. So

d(f,Q) ≤ L

1− L
.

So

‖f(x)−Q(x)‖ ≤ L

1− L
ϕ(x, 0, 0)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 3.2.

Corollary 3.5. Let r < 2 and θ be positive real numbers, and let
f : X → Y be an even mapping satisfying (3.8). Then there exists a
unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2rθ

4− 2r
‖x‖r

for all x ∈ X.
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Proof. The proof follows from Theorem 3.4 by taking ϕ(x, y, z) =
θ(‖x‖r + ‖y‖r + ‖z‖r) for all x, y, z ∈ X. Then we can choose L = 2r−2

and we get desired result.

Remark 3.6. If ρ is a real number such that −1
8
< ρ < 1

8
and Y is a

real Banach space, then all the assertions in this section remain valid.

4. Quadratic ρ-functional inequality (0.2)

Throughout this section, assume that ρ is a fixed complex number
with |ρ| < 4.

In this section, we solve and investigate the quadratic ρ-functional
inequality (0.2) in complex normed spaces.

Lemma 4.1. An even mapping f : X → Y satisfies

‖f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)

−4f(x)− 4f(y)− 4f(z)‖

≤
∥∥∥∥ρ(f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
(4.1)

+f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

)∥∥∥∥
for all x, y, z ∈ X if and only if f : X → Y is quadratic.

Proof. Assume that f : X → Y satisfies (4.1).

Letting x = y = z = 0 in (4.1), we get ‖8f(0)‖ ≤ |ρ|‖f(0)‖. So
f(0) = 0.

Letting x = y, z = 0 in (4.1), we get

‖2f (2x)− 8f(x)‖ ≤ 0 (4.2)

and so f
(
x
2

)
= 1

4
f(x) for all x ∈ X.
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It follows from (4.1) and (4.2) that

‖f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)

−4f(x)− 4f(y)− 4f(z)‖

≤
∥∥∥∥ρ(f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

)∥∥∥∥
=

∥∥∥∥ρ(1

4
f(x+ y + z) +

1

4
f(x− y − z) +

1

4
f(y − x− z)

+
1

4
f(z − x− y)− f(x)− f(y)− f(z)

)∥∥∥∥
=
|ρ|
4
‖f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)

−4f(x)− 4f(y)− 4f(z)‖

and so

f(x+y+z)+f(x−y−z)+f(y−x−z)+f(z−x−y) = 4f(x)+4f(y)+4f(z)

for all x, y, z ∈ X, since |ρ| < 4. So f is quadratic.
The converse is obviously true.

We prove the Hyers-Ulam stability of the quadratic ρ-functional in-
equality (4.1) in complex Banach spaces.

Theorem 4.2. Let ϕ : X3 → [0,∞) be a function with ϕ(0, 0, 0) = 0
such that there exists an L < 1 with

ϕ
(x

2
,
y

2
,
z

2

)
≤ L

4
ϕ (x, y, z) (4.3)

for all x, y, z ∈ X. Let f : X → Y be an even mapping satisfying

‖f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)

−4f(x)− 4f(y)− 4f(z)‖

≤
∥∥∥∥ρ(f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
+f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

)∥∥∥∥+ ϕ(x, y, z) (4.4)
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for all x, y, z ∈ X. Then there exists a unique quadratic mapping Q :
X → Y such that

‖f(x)−Q(x)‖ ≤ L

4(1− L)
ϕ (x, x, 0) (4.5)

for all x ∈ X.

Proof. Letting x = y = z = 0 in (4.4), we get ‖8f(0)‖ ≤ |ρ|‖f(0)‖.
So f(0) = 0.

Letting x = y, z = 0 in (4.4), we get∥∥∥4f
(x

2

)
− f(x)

∥∥∥ ≤ ϕ
(x

2
,
x

2
, 0
)
≤ L

4
ϕ (x, x, 0) (4.6)

for all x ∈ X.
Consider the set

S := {h : X → Y, h(0) = 0}
and introduce the generalized metric on S:

d(g, h) = inf {µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µϕ (x, x, 0) , ∀x ∈ X} ,
where, as usual, inf φ = +∞. It is easy to show that (S, d) is complete
(see [13]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 4g
(x

2

)
for all x ∈ X.

Let g, h ∈ S be given such that d(g, h) = ε. Then

‖g(x)− h(x)‖ ≤ εϕ (x, x, 0)

for all x ∈ X. Hence

‖Jg(x)− Jh(x)‖ =
∥∥∥4g

(x
2

)
− 4h

(x
2

)∥∥∥ ≤ Lεϕ (x, x, 0)

for all a ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means
that

d(Jg, Jh) ≤ Ld(g, h)

for all g, h ∈ S.
It follows from (4.6) that d(f, Jf) ≤ L

4
.

By Theorem 1.1, there exists a mapping Q : X → Y satisfying the
following:
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(1) Q is a fixed point of J , i.e.,

Q (x) = 4Q
(x

2

)
(4.7)

for all x ∈ X. The mapping Q is a unique fixed point of J in the set

M = {g ∈ S : d(f, g) <∞}.

This implies that Q is a unique mapping satisfying (4.7) such that there
exists a µ ∈ (0,∞) satisfying

‖f(x)−Q(x)‖ ≤ µϕ (x, x, 0)

for all x ∈ X;
(2) d(J lf,Q)→ 0 as l→∞. This implies the equality

lim
l→∞

4nf
( x

2n

)
= Q(x)

for all x ∈ X;
(3) d(f,Q) ≤ 1

1−Ld(f, Jf), which implies the inequality

d(f,Q) ≤ L

4(1− L)
.

So

‖f(x)−Q(x)‖ ≤ L

4(1− L)
ϕ(x, x, 0)

for all x ∈ X.
It follows from (4.3) and (4.4) that∥∥∥∥Q(x+ y + z

2

)
+Q

(
x− y − z

2

)
+Q

(
y − x− z

2

)
+Q

(
z − x− y

2

)
−Q(x)−Q(y)−Q(z)

∥∥∥∥
= lim

n→∞
4n
∥∥∥∥f (x+ y + z

2n+1

)
+ f

(
x− y − z

2n+1

)
+ f

(
y − x− z

2n+1

)
+f

(
z − x− y

2n+1

)
− f

( x
2n

)
− f

( y
2n

)
− f

( z
2n

)∥∥∥∥
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≤ lim
n→∞

4n|ρ|
∥∥∥∥f (x+ y + z

2n

)
+ f

(
x− y − z

2n

)
+ f

(
y − x− z

2n

)
+f

(
z − x− y

2n

)
− 4f

( x
2n

)
− 4f

( y
2n

)
− 4f

( z
2n

)∥∥∥∥
+ lim

n→∞
4nϕ

( x
2n
,
y

2n
,
z

2n

)
= ‖ρ(Q(x+ y + z) +Q(x− y − z) +Q(y − x− z) +Q(z − x− y)

−4Q(x)− 4Q(y)− 4Q(z))‖

for all x, y, z ∈ X. So∥∥∥∥Q(x+ y + z

2

)
+Q

(
x− y − z

2

)
+Q

(
y − x− z

2

)
+Q

(
z − x− y

2

)
−Q(x)−Q(y)−Q(z)

∥∥∥∥
≤ ‖ρ(Q(x+ y + z) +Q(x− y − z) +Q(y − x− z) +Q(z − x− y)

−4Q(x)− 4Q(y)− 4Q(z))‖

for all x, y, z ∈ X. By Lemma 4.1, the mapping Q : X → Y is quadratic.
The rest of the proof is similar to the proof of Theorem 3.2.

Corollary 4.3. Let r > 2 and θ be nonnegative real numbers, and
let f : X → Y be an even mapping such that

‖f(x+ y + z) + f(x− y − z) + f(y − x− z) + f(z − x− y)

−4f(x)− 4f(y)− 4f(z)‖

≤
∥∥∥∥ρ(f (x+ y + z

2

)
+ f

(
x− y − z

2

)
+ f

(
y − x− z

2

)
(4.8)

+f

(
z − x− y

2

)
− f(x)− f(y)− f(z)

)∥∥∥∥
+θ(‖x‖r + ‖y‖r + ‖z‖r)

for all x, y, z ∈ X. Then there exists a unique quadratic mapping Q :
X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

2r − 4
‖x‖r

for all x ∈ X.
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Proof. The proof follows from Theorem 4.2 by taking ϕ(x, y, z) =
θ(‖x‖r + ‖y‖r + ‖z‖r) for all x, y, z ∈ X. Then we can choose L = 22−r

and we get desired result.

Theorem 4.4. Let ϕ : X3 → [0,∞) be a function with ϕ(0, 0, 0) = 0
such that there exists an L < 1 with

ϕ (x, y, z) ≤ 4Lϕ
(x

2
,
y

2
,
z

2

)
for all x, y, z ∈ X Let f : X → Y be an even mapping satisfying (4.4).
Then there exists a unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 1

4(1− L)
ϕ (x, x, 0)

for all x ∈ X.

Proof. It follows from (4.6) that∥∥∥∥f(x)− 1

4
f(2x)

∥∥∥∥ ≤ 1

4
ϕ(x, x, 0) (4.9)

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of

Theorem 4.2.
Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

4
g (2x)

for all x ∈ X.
It follows from (4.9) that d(f, Jf) ≤ 1

4
. So d(f,Q) ≤ 1

4(1−L)d(f, Jf),

which implies the inequality

d(f,Q) ≤ 1

1− L
.

So

‖f(x)−Q(x)‖ ≤ 1

4(1− L)
ϕ(x, x, 0)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 3.2.
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Corollary 4.5. Let r < 2 and θ be nonnegative real numbers, and
let f : X → Y be an even mapping satisfying (4.8). Then there exists a
unique quadratic mapping Q : X → Y such that

‖f(x)−Q(x)‖ ≤ 2θ

4− 2r
‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 4.4 by taking ϕ(x, y, z) =
θ(‖x‖r + ‖y‖r + ‖z‖r) for all x, y, z ∈ X. Then we can choose L = 2r−2

and we get desired result.

Remark 4.6. If ρ is a real number such that −4 < ρ < 4 and Y is a
real Banach space, then all the assertions in this section remain valid.
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