• Title/Summary/Keyword: Exton hypergeometric functions

Search Result 21, Processing Time 0.024 seconds

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X8

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.257-264
    • /
    • 2012
  • Exton introduced 20 distinct triple hypergeometric functions whose names are $X_i$ (i = 1, ${\ldots}$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function ${\Psi}_1$, and a Humbert function ${\Phi}_2$. The object of this paper is to present 18 new integral representations of Euler type for the Exton hypergeometric function $X_8$, whose kernels include the Exton functions ($X_2$, $X_8$) itself, the Horn's function $H_4$, the Gauss hypergeometric function $F$, and Lauricella hypergeometric function $F_C$. We also provide a system of partial differential equations satisfied by $X_8$.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION X5

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.32 no.3
    • /
    • pp.389-397
    • /
    • 2010
  • Exton introduced 20 distinct triple hypergeometric functions whose names are Xi (i = 1,$\ldots$, 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_0F_1$, $_1F_1$, a Humbert function $\Psi_2$, a Humbert function $\Phi_2$. The object of this paper is to present 25 (presumably new) integral representations of Euler types for the Exton hypergeometric function $X_5$ among his twenty $X_i$ (i = 1,$\ldots$, 20), whose kernels include the Exton function X5 itself, the Exton function $X_6$, the Horn's functions $H_3$ and $H_4$, and the hypergeometric function F = $_2F_1$.

CERTAIN INTEGRAL REPRESENTATIONS OF EULER TYPE FOR THE EXTON FUNCTION $X_2$

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.347-354
    • /
    • 2010
  • Exton [Hypergeometric functions of three variables, J. Indian Acad. Math. 4 (1982), 113~119] introduced 20 distinct triple hypergeometric functions whose names are $X_i$ (i = 1, ..., 20) to investigate their twenty Laplace integral representations whose kernels include the confluent hypergeometric functions $_oF_1$, $_1F_1$, a Humbert function ${\Psi}_2$, a Humbert function ${\Phi}_2$. The object of this paper is to present 16 (presumably new) integral representations of Euler type for the Exton hypergeometric function $X_2$ among his twenty $X_i$ (i = 1, ..., 20), whose kernels include the Exton function $X_2$ itself, the Appell function $F_4$, and the Lauricella function $F_C$.

DECOMPOSITION FORMULAS AND INTEGRAL REPRESENTATIONS FOR SOME EXTON HYPERGEOMETRIC FUNCTIONS

  • Choi, Junesang;Hasanov, Anvar;Turaev, Mamasali
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.745-758
    • /
    • 2011
  • Generalizing the Burchnall-Chaundy operator method, the authors are aiming at presenting certain decomposition formulas for the chosen six Exton functions expressed in terms of Appell's functions $F_3$ and $F_4$, Horn's functions $H_3$ and $H_4$, and Gauss's hypergeometric function F. We also give some integral representations for the Exton functions $X_i$ (i = 6, 8, 14) each of whose kernels contains the Horn's function $H_4$.

Recursion Formulas for Exton's triple Hypergeometric Functions

  • Sahai, Vivek;Verma, Ashish
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.473-506
    • /
    • 2016
  • This paper continues the study of recursion formulas of multivariable hypergeometric functions. Earlier, in [4], the authors have given the recursion formulas for three variable Lauricella functions, Srivastava's triple hypergeometric functions and k-variable Lauricella functions. Further, in [5], we have obtained recursion formulas for the general triple hypergeometric function. We present here the recursion formulas for Exton's triple hypergeometric functions.

Generalization of a Transformation Formula for the Exton's Triple Hypergeometric Series X12 and X17

  • Choi, Junesang;Rathie, Arjun K.
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.677-684
    • /
    • 2014
  • In the theory of hypergeometric functions of one or several variables, a remarkable amount of mathematicians's concern has been given to develop their transformation formulas and summation identities. Here we aim at generalizing the following transformation formula for the Exton's triple hypergeometric series $X_{12}$ and $X_{17}$: $$(1+2z)^{-b}X_{17}\;\left(a,b,c_3;\;c_1,c_2,2c_3;\;x,{\frac{y}{1+2z}},{\frac{4z}{1+2z}}\right)\\{\hfill{53}}=X_{12}\;\left(a,b;\;c_1,c_2,c_3+{\frac{1}{2}};\;x,y,z^2\right).$$ The results are derived with the help of two general hypergeometric identities for the terminating $_2F_1(2)$ series which were very recently obtained by Kim et al. Four interesting results closely related to the Exton's transformation formula are also chosen, among ten, to be derived as special illustrative cases of our main findings. The results easily obtained in this paper are simple and (potentially) useful.

QUADRATIC TRANSFORMATIONS INVOLVING HYPERGEOMETRIC FUNCTIONS OF TWO AND HIGHER ORDER

  • Choi, June-Sang;Rathie, Arjun K.
    • East Asian mathematical journal
    • /
    • v.22 no.1
    • /
    • pp.71-77
    • /
    • 2006
  • By applying various known summation theorems to a general transformation formula based upon Bailey's transformation theorem due to Slater, Exton has obtained numerous and new quadratic transformations involving hypergeometric functions of order greater than two(some of which have typographical errors). We aim at first deriving a general quadratic transformation formula due to Exton and next providing a list of quadratic formulas(including the corrected forms of Exton's results) and some more results.

  • PDF

APPELL'S FUNCTION F1 AND EXTON'S TRIPLE HYPERGEOMETRIC FUNCTION X9

  • Choi, Junesang;Rathie, Arjun K.
    • The Pure and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.37-50
    • /
    • 2013
  • In the theory of hypergeometric functions of one or several variables, a remarkable amount of mathematicians's concern has been given to develop their transformation formulas and summation identities. Here we aim at presenting explicit expressions (in a single form) of the following weighted Appell's function $F_1$: $$(1+2x)^{-a}(1+2z)^{-b}F_1\;\(c,\;a,\;b;\;2c+j;\;\frac{4x}{1+2x},\;\frac{4z}{1+2z}\)\;(j=0,\;{\pm}1,\;{\ldots},\;{\pm}5)$$ in terms of Exton's triple hypergeometric $X_9$. The results are derived with the help of generalizations of Kummer's second theorem very recently provided by Kim et al. A large number of very interesting special cases including Exton's result are also given.

A REDUCIBILITY OF EXTON'S TRIPLE HYPERGEOMETRIC SERIES X2

  • Choi, June-Sang;Rathie, Arjun K.
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.187-189
    • /
    • 2008
  • We aim at presenting an interesting result for a reducibility of Exton's triple hypergeometric series $X_2$. The identity to be given here is obtained by combining Exton's Laplace integral representation for $X_2$ and Henrici's formula for the product of three hypergeometric series.

LINEARLY INDEPENDENT SOLUTIONS FOR THE HYPERGEOMETRIC EXTON FUNCTIONS X1 AND X2

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Honam Mathematical Journal
    • /
    • v.33 no.2
    • /
    • pp.223-229
    • /
    • 2011
  • In investigation of boundary-value problems for certain partial differential equations arising in applied mathematics, we often need to study the solution of system of partial differential equations satisfied by hypergeometric functions and find explicit linearly independent solutions for the system. Here we choose the Exton functions $X_1$ and $X_2$ among his twenty functions to show how to find the linearly independent solutions of partial differential equations satisfied by these functions $X_1$ and $X_2$.