References
- P. Appell and J. Kampe de Feriet, Fonctions Hypergeometriques et Hyperspheriques; Polynomes d'Hermite, Gauthier - Villars, Paris, 1926.
- L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, Wiley, New York, 1958.
- F.I. Frankl, Selected Works in Gas Dynamics, Nauka, Moscow, 1973.
- A.W. Niukkanen, Generalized hypergeometric series arising in physical and quantum chemical applications, J. Phys. A: Math. Gen. 16 (1983) 1813-1825. https://doi.org/10.1088/0305-4470/16/9/007
- G. Lohofer, Theory of an electromagnetically deviated metal sphere. 1: Absorbed power, SIAM J. Appl. Math. 49 (1989), 567-581. https://doi.org/10.1137/0149032
- A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. 1, McGraw-Hill Book Company, New York, Toronto and London, 1953.
- J. Barros-Neto and I.M. Gelfand, Fundamental solutions for the Tricomi operator, Duke Math. J. 98(3) (1999), 465-483. https://doi.org/10.1215/S0012-7094-99-09814-9
- J. Barros-Neto and I.M. Gelfand, Fundamental solutions for the Tricomi operator II, Duke Math. J. 111(3) (2002), 561-584. https://doi.org/10.1215/S0012-7094-02-11137-5
- J. Barros-Neto and I.M. Gelfand, Fundamental solutions for the Tricomi operator III, Duke Math. J. 128(1) (2005), 119-140. https://doi.org/10.1215/S0012-7094-04-12815-5
- H. Exton, Hypergeometric functions of three variables, J. Indian Acad. Math. 4 (1982), 113-119.
- A.J. Fryant, Growth and complete sequences of generalized bi-axially symmetric potentials, J. Differential Equations 31(2) (1979), 155-164. https://doi.org/10.1016/0022-0396(79)90141-4
- A. Hasanov, Fundamental solutions of generalized bi-axially symmetric Helmholtz equation, Complex Variables and Elliptic Equations 52(8) (2007), 673-683. https://doi.org/10.1080/17476930701300375
- A. Hasanov, Some solutions of generalized Rassias's equation, Intern. J. Appl. Math. Stat. 8(M07) (2007), 20-30.
- A. Hasanov, The solution of the Cauchy problem for generalized Euler-Poisson-Darboux equation. Intern. J. Appl. Math. Stat. 8 (M07) (2007), 30-44.
- A. Hasanov, Fundamental solutions for degenerated elliptic equation with two perpendicular lines of degeneration. Intern. J. Appl. Math. Stat. 13(8) (2008), 41-49.
- A. Hasanov and E.T. Karimov, Fundamental solutions for a class of three-dimensional elliptic equations with singular coefficients. Appl. Math. Letters 22 (2009), 1828-1832. https://doi.org/10.1016/j.aml.2009.07.006
- A. Hasanov, J.M. Rassias , and M. Turaev, Fundamental solution for the generalized Elliptic Gellerstedt Equation, Book: "Functional Equations, Difference Inequalities and ULAM Stability Notions", Nova Science Publishers Inc. NY, USA, 6 (2010), 73-83.
- H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), Wiley, New York, Chichester, Brisbane, and Toronto, 1985.
- R.J. Weinacht, Fundamental solutions for a class of singular equations, Contrib. Differential Equations 3 (1964), 43-55.
- A. Weinstein, Discontinuous integrals and generalized potential theory, Trans. Amer. Math. Soc. 63 (1946), 342-354.
Cited by
- Relations between Lauricella’s triple hypergeometric function F A ( 3 ) ( x , y , z ) and Exton’s function X 8 vol.2013, pp.1, 2013, https://doi.org/10.1186/1687-1847-2013-34