• Title/Summary/Keyword: Excitation System Model

Search Result 454, Processing Time 0.025 seconds

Nonlinear Vibration Responses of a Spring-Pendulum System under Random Base Excitation (불규칙 지반 가진력을 받는 탄성진자계의 비선형진동응답)

  • Cho, Duk-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.175-181
    • /
    • 2001
  • An investigation into the response statistics of a spring-pendulum system whose base oscillates randomly along vertical and horizontal line is made. The spring-pendulum system with internal resonance examined is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equation is used to generate a general first-order differential equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. In view of equilibrium solutions of this system and their stability, the response statistics is examined. It is seen that increase in horizontal excitation level leads to a decreased width of the internal resonance region.

  • PDF

Transient Response Analysis of Linear Dynamic System with Random Properties (확률론적 특성을 갖는 선형 동적계의 과도응답 해석)

  • 김인학;독고욱
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.62-69
    • /
    • 1996
  • Most dynamic systems have various random properties in excitation and system parameters. In this paper, a procedure fur response analysis is proposed for the linear dynamic system with random properties in both excitation and system parameters. The system parameter and response with random properties are modeled by perturbation technique, aand then response analysis is formulated by probabilistic and vibration theories. And probabilistic FEM is also used for the calculation of mean response which is difficult by the proposed response model. As an application example, the transient response is calculated for a sdof system with random mass and spring constant subjected to stationary white-noise excitation and the results are compared to those of numerical simulation.

  • PDF

Prediction of Radiated Noise From a Shaft-bearing-plate System Due to an Axial Excitation of Helical Gears (헬리컬 기어의 축방향 가진에 의한 축-베어링-플레이트계의 방사소음 예측)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.199-203
    • /
    • 2004
  • In this paper, a simplified model is studied to predict analytically the radiated noise from the helical gear system due to an axial excitation of helical gear. The simplified model describes gear, shaft, bearing, and housing. To obtain the axial force of helical gear, mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer function from the shaft to the clamped plate are used, using a spectral method with four pole parameters. Out-of-plane displacement for the thin circular plate with viscous damping is derived and sound pressure radiated from the plate is also derived. Using the model, parameter studies are carried out.

  • PDF

Extraction of bridge flutter derivatives by a forced excitation (강제 가진에 의한 교량 플러터계수 추출)

  • Lee, Seung-Ho;Kwon, Soon-Duck
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.538-544
    • /
    • 2009
  • A vibration excitation system was designed and built of forced vibration experiments for using stepping motor and load cell. The identified flutter derivatives of the thin-plate acrylic model were very close to the analytical results of the idealized plate presented by Theodorsen. Five types of sectional models were tested in the wind tunnel using the proposed forced vibration method. To investigate the frequency, amplitude and angle of attack effects on flutter derivatives.

  • PDF

A study on the persistent excitation in adaptive system (적응계에서 지속여기에 관한 연구)

  • 금상호;이기서
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.483-488
    • /
    • 1989
  • In this paper, the concept of persistent excitation(PE) is examed and the model reference adaptive control of a linear plant subjected to bounded disturbances is considered. Computer simulation reasults of nonlinear differential equations shows that the global behavior of the adaptive system depends upon the PE of the reference input as well as the amplitude of the external disturbances. The sufficient conditions on the PE of the reference input for the signals in the adaptive system to be globally bounded has been derived.

  • PDF

Steady State Analysis of a Stand-alone Induction Generator with AC Rotor Excitation (회전자 문류\ulcorner\ulcorner방식의 자립형 유도발전기의 정상상태 해석)

  • 박민호;정승기;이진우
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.1
    • /
    • pp.33-39
    • /
    • 1988
  • In this paper, a stand-alone wound rotor induction generator system is proposed and its steady state characteristics are analyzed. It is shown that the self-excitation of the system can be acheined by exciting the rotor through the PWM inverter. The analysis is based upon the eguivalent circuit and the steady state dq model of the mahine. The results show that the proposed system can be made to generate constant voltage constant frequency power for various speed and load conditions.

  • PDF

Monte Carlo Simulation of MR Damper Landing Gear Taxiing Mode under Nonstationary Random Excitation

  • Lee, Hyo-Sang;Jang, Dae-Sung;Hwang, Jai-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.4
    • /
    • pp.10-17
    • /
    • 2020
  • When an aircraft is taxiing, excitation force is applied according to the shape of the road surface. The sprung mass acceleration caused by the excitation of the road surface negatively affects the feeling of boarding. This paper addresses the verification process of the semi-active control method applied to improve the feeling of boarding. The Magneto-Rheological damper landing gear model is employed alongside the control method. It is a Oleo-Pneumatic damper filled with a fluid having the characteristics of increasing yield stress when subjected to a magnetic field. The control method involves verifying Skyhook Control Type2 developed by Skyhook control. The Sinozuka white noise model that considers runway characteristics was employed for the road surface in the simulation. The runway road surface obtained through this model has stochastic characteristics, so the dynamic characteristics were analyzed by applying Monte-Carlo simulation. A dynamic analysis was conducted by co-simulating the landing gear model made by RecurDyn and the control method designed by Simulink. Simulation results show that the Skyhook Control Type2 method has the best control effect in the low speed range compared to the passive type (without control) and skyhook control.

An Experimental Study on the Torsional Excitation Source of the Vehicle Driveline (차량 동력 전달계의 비틀림 가진원에 관한 실험적 연구)

  • Chang, Il-Do;Kim, Byoung-Sam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.865-870
    • /
    • 2005
  • Torque fluctuation of the engine and angular velocity variation of propeller shaft is the main excitation source for torsional vibration in the vehicle driveline. Experimental model for engine system is constructed with 4 cylinder 4 cycle diesel engine including Motor-Propeller Shaft-Axle-Wheel system. The angular velocity is measured by magnetic pickup and FV converter at the engine flywheel and propeller shaft. This paper presents the theoretical mechanism of these excitation sources and it is identified by the experimental methods.

Stability Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness (Waviness가 있는 볼베어링으로 지지된 회전계의 안정성 해석)

  • 정성원;장건희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.181-189
    • /
    • 2002
  • This research presents an analytical model to investigate the stability due to the ball bearing waviness in a rotating system supported by two ball bearings. The stiffness of a ball bearing changes periodically due to the waviness in the rolling elements as the rotor rotates, and it can be calculated by differentiating the nonlinear contact forces. The linearized equations of motion can be represented as a parametrically excited system in the form of Mathieu's equation, because the stiffness coefficients have time-varying components due to the waviness. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as the simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving the Hill's infinite determinant of these algebraic equations. The validity of this research is proved by comparing the stability chart with the time responses of the vibration model suggested by prior researches. This research shows that the waviness in the rolling elements of a ball bearing generates the time-varying component of the stiffness coefficient, whose frequency is called the frequency of the parametric excitation. It also shows that the instability takes place from the positions in which the ratio of the natural frequency to the frequency of the parametric excitation corresponds to i/2 (i= 1,2,3..).

  • PDF

Metamodeling of nonlinear structural systems with parametric uncertainty subject to stochastic dynamic excitation

  • Spiridonakos, Minas D.;Chatzia, Eleni N.
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.915-934
    • /
    • 2015
  • Within the context of Structural Health Monitoring (SHM), it is often the case that structural systems are described by uncertainty, both with respect to their parameters and the characteristics of the input loads. For the purposes of system identification, efficient modeling procedures are of the essence for a fast and reliable computation of structural response while taking these uncertainties into account. In this work, a reduced order metamodeling framework is introduced for the challenging case of nonlinear structural systems subjected to earthquake excitation. The introduced metamodeling method is based on Nonlinear AutoRegressive models with eXogenous input (NARX), able to describe nonlinear dynamics, which are moreover characterized by random parameters utilized for the description of the uncertainty propagation. These random parameters, which include characteristics of the input excitation, are expanded onto a suitably defined finite-dimensional Polynomial Chaos (PC) basis and thus the resulting representation is fully described through a small number of deterministic coefficients of projection. The effectiveness of the proposed PC-NARX method is illustrated through its implementation on the metamodeling of a five-storey shear frame model paradigm for response in the region of plasticity, i.e., outside the commonly addressed linear elastic region. The added contribution of the introduced scheme is the ability of the proposed methodology to incorporate uncertainty into the simulation. The results demonstrate the efficiency of the proposed methodology for accurate prediction and simulation of the numerical model dynamics with a vast reduction of the required computational toll.