• 제목/요약/키워드: Euler numbers and polynomials

검색결과 61건 처리시간 0.023초

A NOTE ON q-ANALOGUE OF POLY-EULER POLYNOMIALS AND ARAKAWA-KANEKO TYPE ZETA FUNCTION

  • KIM, YOUNG ROK;LEE, HUI YOUNG;KIM, AHYUN
    • Journal of applied mathematics & informatics
    • /
    • 제38권5_6호
    • /
    • pp.611-623
    • /
    • 2020
  • In this paper, we define a q-analogue of the poly-Euler numbers and polynomials which is generalization of the poly Euler numbers and polynomials including q-analogue of polylogarithm function. We also give the relations between generalized poly-Euler polynomials. Furthermore, we introduce zeta fuctions of Arakawa-Kaneko type and talk their properties and the relation with q-analogue of poly-Euler polynomials.

ON FULLY MODIFIED q-POLY-EULER NUMBERS AND POLYNOMIALS

  • C.S. RYOO
    • Journal of Applied and Pure Mathematics
    • /
    • 제6권1_2호
    • /
    • pp.1-11
    • /
    • 2024
  • In this paper, we define a new fully modified q-poly-Euler numbers and polynomials of the first type by using q-polylogarithm function. We derive some identities of the modified polynomials with Gaussian binomial coefficients. We also explore several relations that are connected with the q-analogue of Stirling numbers of the second kind.

A NUMERICAL INVESTIGATION ON THE ZEROS OF THE GENOCCHI POLYNOMIALS

  • Ryoo C.S.
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.125-132
    • /
    • 2006
  • It is the aim of this paper to introduce the Genocchi numbers Gn and polynomials Gn(x) and to display the shape of Genocchi polynomials Gn(x). Finally, we investigate the roots of the Genocchi polynomials Gn(x).

SOME RELATIONSHIPS BETWEEN (p, q)-EULER POLYNOMIAL OF THE SECOND KIND AND (p, q)-OTHERS POLYNOMIALS

  • KANG, JUNG YOOG;AGARWAL, R.P.
    • Journal of applied mathematics & informatics
    • /
    • 제37권3_4호
    • /
    • pp.219-234
    • /
    • 2019
  • We use the definition of Euler polynomials of the second kind with (p, q)-numbers to identify some identities and properties of these polynomials. We also investigate some relationships between (p, q)-Euler polynomials of the second kind, (p, q)-Bernoulli polynomials, and (p, q)-tangent polynomials by using the properties of (p, q)-exponential function.

ON THE SPECIAL VALUES OF TORNHEIM'S MULTIPLE SERIES

  • KIM, MIN-SOO
    • Journal of applied mathematics & informatics
    • /
    • 제33권3_4호
    • /
    • pp.305-315
    • /
    • 2015
  • Recently, Jianxin Liu, Hao Pan and Yong Zhang in [On the integral of the product of the Appell polynomials, Integral Transforms Spec. Funct. 25 (2014), no. 9, 680-685] established an explicit formula for the integral of the product of several Appell polynomials. Their work generalizes all the known results by previous authors on the integral of the product of Bernoulli and Euler polynomials. In this note, by using a special case of their formula for Euler polynomials, we shall provide several reciprocity relations between the special values of Tornheim's multiple series.

CALCULATING ZEROS OF THE GENERALIZED GENOCCHI POLYNOMIALS

  • Agarwal, R.P.;Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • 제27권3_4호
    • /
    • pp.453-462
    • /
    • 2009
  • Kim [4] defined the generalized Genocchi numbers $G_{n,x}$. In this paper, we introduce the generalized Genocchi polynomials $G_{n,x}(x)$. One purpose of this paper is to investigate the zeros of the generalized Genocchi polynomials $G_{n,x}(x)$. We also display the shape of generalized Genocchi polynomials $G_{n,x}(x)$.

  • PDF