• Title/Summary/Keyword: Euler Beam Theory

Search Result 340, Processing Time 0.019 seconds

Non-linear free and forced vibration analysis of sandwich nano-beam with FG-CNTRC face-sheets based on nonlocal strain gradient theory

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.105-120
    • /
    • 2018
  • In this paper, the nonlinear free and forced vibration responses of sandwich nano-beams with three various functionally graded (FG) patterns of reinforced carbon nanotubes (CNTs) face-sheets are investigated. The sandwich nano-beam is resting on nonlinear Visco-elastic foundation and is subjected to thermal and electrical loads. The nonlinear governing equations of motion are derived for an Euler-Bernoulli beam based on Hamilton principle and von Karman nonlinear relation. To analyze nonlinear vibration, Galerkin's decomposition technique is employed to convert the governing partial differential equation (PDE) to a nonlinear ordinary differential equation (ODE). Furthermore, the Multiple Times Scale (MTS) method is employed to find approximate solution for the nonlinear time, frequency and forced responses of the sandwich nano-beam. Comparison between results of this paper and previous published paper shows that our numerical results are in good agreement with literature. In addition, the nonlinear frequency, force response and nonlinear damping time response is carefully studied. The influences of important parameters such as nonlocal parameter, volume fraction of the CNTs, different patterns of CNTs, length scale parameter, Visco-Pasternak foundation parameter, applied voltage, longitudinal magnetic field and temperature change are investigated on the various responses. One can conclude that frequency of FG-AV pattern is greater than other used patterns.

An analytical solution for free vibration of functionally graded beam using a simple first-order shear deformation theory

  • Larbi, Latifa Ould;Hadji, Lazreg;Meziane, Mohamed Ait Amar;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.247-254
    • /
    • 2018
  • In this paper, a simple first-order shear deformation theory is presented for dynamic behavior of functionally graded beams. Unlike the existing first-order shear deformation theory, the present one contains only three unknowns and has strong similarities with the classical beam theory in many aspects such as equations of motion, boundary conditions, and stress resultant expressions. Equations of motion and boundary conditions are derived from Hamilton's principle. Analytical solutions of simply supported FG beam are obtained and the results are compared with Euler-Bernoulli beam and the other shear deformation beam theory results. Comparison studies show that this new first-order shear deformation theory can achieve the same accuracy of the existing first-order shear deformation theory.

Vibration Analysis of Rotating Pre-twisted Inward Beams with a Concentrated Mass (집중질량과 초기 비틀림을 갖는 회전중심방향 자유단 외팔보의 진동해석)

  • Lee, Gun Ho;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.6
    • /
    • pp.384-390
    • /
    • 2015
  • The vibration analysis of rotating inward beams considering the pre-twisted is presented based on Euler-Bernoulli beam theory. The frequency equations, are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. In this study, resulting system of ordinary differential equations shows the effects of angular speed, and Young's modulus ratio. It is believed that the results will be a reference with which other researchers and commercial FE analysis program, ANSYS can compare their result.

Vibration Analysis of Rotating Inward Cantilever Beams With a Tip-Mass (집중질량을 갖는 회전중심방향 자유단 외팔보의 진동해석)

  • Lee, Gun Ho;Yoo, Hong Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.389-391
    • /
    • 2014
  • The Vibration Analysis of Rotating Inward Beams Considering The Tip-Mass is presented based on Euler-Bernoulli beam theory. The frequency equations, which are coupled through gyroscopic coupling terms, are calculated using hybrid deformation variable modeling along with the Rayleigh-Ritz assumed mode methods. In this study, resulting system of ordinary differential equations shows the effects of angular speed, and Young's modulus ratio. It is believed that the results will be a reference with which other researchers and commercial FE analysis program, ANSYS can compare their results.

  • PDF

Gemetrical Non-Linear Behavior of Simply Supported Tapered Beams (단순지지 변단면 보의 기하학적 비선형 거동)

  • 이병구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.1
    • /
    • pp.106-114
    • /
    • 1999
  • This paper explores the geometrical non-linear behavior of the simply supported tapered beams subject to the trapezoidal distributed load and end moments. In order to apply the Bernoulli -Euler beam theory to this tapered beam, the bending moment equation on any point of the elastical is obtained by the redistribution of trapezoidal distributed load. On the basis of the bending moment equation and the BErnoulli-Euler beam theory, the differential equations governging the elastical of such beams are derived and solved numerically by using the Runge-Jutta method and the trial and error method. The three kinds of tapered beams (i.e. width, depth and square tapers) are analyzed in this study. The numerical results of non-linear behavior obtained in this study from the simply supported tapered beams are appeared to be quite well according to the results from the reference . As the numerical results, the elastica, the stress resultants and the load-displacement curves are given in the figures.

  • PDF

Free vibration of AFG beams with elastic end restraints

  • Bambaeechee, Mohsen
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.403-432
    • /
    • 2019
  • Axially functionally graded (AFG) beams are a new class of composite structures that have continuous variations in material and/or geometrical parameters along the axial direction. In this study, the exact analytical solutions for the free vibration of AFG and uniform beams with general elastic supports are obtained by using Euler-Bernoulli beam theory. The elastic supports are modeled with linear rotational and lateral translational springs. Moreover, the material and/or geometrical properties of the AFG beams are assumed to vary continuously and together along the length of the beam according to the power-law forms. Accordingly, the accuracy, efficiency and capability of the proposed formulations are demonstrated by comparing the responses of the numerical examples with the available solutions. In the following, the effects of the elastic end restraints and AFG parameters, namely, gradient index and gradient coefficient, on the values of the first three natural frequencies of the AFG and uniform beams are investigated comprehensively. The analytical solutions are presented in tabular and graphical forms and can be used as the benchmark solutions. Furthermore, the results presented herein can be utilized for design of inhomogeneous beams with various supporting conditions.

Dynamic stiffness matrix of an axially loaded slenderdouble-beam element

  • Jun, Li;Hongxing, Hua;Xiaobin, Li
    • Structural Engineering and Mechanics
    • /
    • v.35 no.6
    • /
    • pp.717-733
    • /
    • 2010
  • The dynamic stiffness matrix is formulated for an axially loaded slender double-beam element in which both beams are homogeneous, prismatic and of the same length by directly solving the governing differential equations of motion of the double-beam element. The Bernoulli-Euler beam theory is used to define the dynamic behaviors of the beams and the effects of the mass of springs and axial force are taken into account in the formulation. The dynamic stiffness method is used for calculation of the exact natural frequencies and mode shapes of the double-beam systems. Numerical results are given for a particular example of axially loaded double-beam system under a variety of boundary conditions, and the exact numerical solutions are shown for the natural frequencies and normal mode shapes. The effects of the axial force and boundary conditions are extensively discussed.

Static behavior of nonlocal Euler-Bernoulli beam model embedded in an elastic medium using mixed finite element formulation

  • Nguyen, Tuan Ngoc;Kim, Nam-Il;Lee, Jaehong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.2
    • /
    • pp.137-146
    • /
    • 2017
  • The size-dependent behavior of single walled carbon nanotubes (SWCNT) embedded in the elastic medium and subjected to the initial axial force is investigated using the mixed finite element method. The SWCNT is assumed to be Euler-Bernoulli beam incorporating nonlocal theory developed by Eringen. The mixed finite element model shows its great advantage of dealing with nonlocal behavior of SWCNT subjected to a concentrated load owing to the existence of two coefficients ${\alpha}_1$ and ${\alpha}_2$. This is the first numerical approach to deal with a puzzling fact of nonlocal theory with concentrated load. Numerical examples are performed to show the accuracy and efficiency of the present method. In addition, parametric study is carefully carried out to point out the influences of nonlocal effect, the elastic medium, and the initial axial force on the behavior of the carbon nanotubes.

Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory

  • Belmahi, Samir;Zidour, Mohammed;Meradjah, Mustapha
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.1
    • /
    • pp.1-18
    • /
    • 2019
  • This present article represents the study of the forced vibration of nanobeam of a single-walled carbon nanotube (SWCNTs) surrounded by a polymer matrix. The modeling was done according to the Euler-Bernoulli beam model and with the application of the non-local continuum or elasticity theory. Particulars cases of the local elasticity theory have also been studied for comparison. This model takes into account the different effects of the interaction of the Winkler's type elastic medium with the nanobeam of carbon nanotubes. Then, a study of the influence of the amplitude distribution and the frequency was made by variation of some parameters such as (scale effect ($e_0{^a}$), the dimensional ratio or aspect ratio (L/d), also, bound to the mode number (N) and the effect of the stiffness of elastic medium ($K_w$). The results obtained indicate the dependence of the variation of the amplitude and the frequency with the different parameters of the model, besides they prove the local effect of the stresses.

Geometrical Nonlinear Analyses of Post-buckled Columns with Variable Cross-section (후좌굴 변단면 기둥의 기하 비선형 해석)

  • Lee, Byoung Koo;Kim, Suk Ki;Lee, Tae Eun;Kim, Gwon Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.53-60
    • /
    • 2009
  • This paper deals with the geometrical nonlinear analyses of post-buckled columns with variable cross-section. The objective columns having variable cross-section of the width, depth and square tapers are supported by both hinged ends. By using the Bernoulli-Euler beam theory, differential equations governing the elastica of post-buckled column and their boundary conditions are derived. The solution methods of these differential equations which have two unknown parameters are developed. As the numerical results, equilibrium paths, elasticas and stress resultants of the post-buckled columns are presented. Laboratory scaled experiments were conducted for validating the theories developed in this study.