DOI QR코드

DOI QR Code

Non-linear free and forced vibration analysis of sandwich nano-beam with FG-CNTRC face-sheets based on nonlocal strain gradient theory

  • Arani, Ali Ghorbanpour (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Pourjamshidian, Mahmoud (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Arefi, Mohammad (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2016.12.29
  • Accepted : 2018.04.16
  • Published : 2018.07.25

Abstract

In this paper, the nonlinear free and forced vibration responses of sandwich nano-beams with three various functionally graded (FG) patterns of reinforced carbon nanotubes (CNTs) face-sheets are investigated. The sandwich nano-beam is resting on nonlinear Visco-elastic foundation and is subjected to thermal and electrical loads. The nonlinear governing equations of motion are derived for an Euler-Bernoulli beam based on Hamilton principle and von Karman nonlinear relation. To analyze nonlinear vibration, Galerkin's decomposition technique is employed to convert the governing partial differential equation (PDE) to a nonlinear ordinary differential equation (ODE). Furthermore, the Multiple Times Scale (MTS) method is employed to find approximate solution for the nonlinear time, frequency and forced responses of the sandwich nano-beam. Comparison between results of this paper and previous published paper shows that our numerical results are in good agreement with literature. In addition, the nonlinear frequency, force response and nonlinear damping time response is carefully studied. The influences of important parameters such as nonlocal parameter, volume fraction of the CNTs, different patterns of CNTs, length scale parameter, Visco-Pasternak foundation parameter, applied voltage, longitudinal magnetic field and temperature change are investigated on the various responses. One can conclude that frequency of FG-AV pattern is greater than other used patterns.

Keywords

Acknowledgement

Supported by : University of Kashan

References

  1. Amadian, M. T., Mojahedi, M. and Moeenfard, H. (2009), " Free vibration analysis of a nonlinerar beam using bomotopty and modified lindstedt-poincare methods", J. Solid. Mech., 1, 29-36.
  2. Akgoz, B. and Civalek, O. (2013), "Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (fgm) ", Compos. Part B: Eng., 55, 263-268. https://doi.org/10.1016/j.compositesb.2013.06.035
  3. Akgoz, B. and Civalek, O. (2014), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104. https://doi.org/10.1016/j.ijengsci.2014.08.011
  4. Alibeigloo, A. (2014), "Three-dimensional thermoelasticity solution of functionally graded carbon nanotube reinforced composite plate embedded in piezoelectric sensor and actuator layers", Compos. Struct., 118, 482-495. https://doi.org/10.1016/j.compstruct.2014.08.004
  5. Amal, M.K.E. and Mahmoud, M.F. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28, 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
  6. Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Sadeghi, S. (2014), "Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams", Compos. Struct., 113, 316-327. https://doi.org/10.1016/j.compstruct.2014.03.015
  7. Ansari, R., Shojaei, M.F., Mohammadi, V., Gholami, R. and Darabi, M.A. (2014), "Nonlinear vibrations of functionally graded mindlin microplates based on the modified couple stress theory", Compos. Struct., 114, 124-134. https://doi.org/10.1016/j.compstruct.2014.04.013
  8. Arefi, M. (2016), "Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage", Appl. Math. Mech., 37, 289-302. https://doi.org/10.1007/s10483-016-2039-6
  9. Arefi, M., Pourjamshidian, M. and Ghorbanpour Arani, A. (2018), "Nonlinear free and forced vibration analysis of embedded functionally graded sandwich micro beam with moving mass", J. Sandw. Struct. Mater., 20 (4), 462-492. https://doi.org/10.1177/1099636216658895
  10. Arefi, M. and Zenkour, A.M. (2016), "Free vibration, wave propagation and tension analyses of a sandwich micro/nano rod subjected to electric potential using strain gradient theory", Mater.Res.Express., 3(11), 115704. https://doi.org/10.1088/2053-1591/3/11/115704
  11. Arefi, M. and Zenkour, A.M. (2017a), "Thermo-electromechanical bending behavior of sandwich nanoplate integrated with piezoelectric face-sheets based on trigonometric plate theory", Compos. Struct., 162, 108-122. https://doi.org/10.1016/j.compstruct.2016.11.071
  12. Arefi, M. and Zenkour, A.M. (2017b), "Effect of thermo-magnetoelectro-mechanical fields on the bending behaviors of a threelayered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater., Doi: 1099636217697497.
  13. Arefi, M. and Zenkour, A.M. (2017c), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mat. Syst. Str., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930
  14. Arefi, M. and Zenkour, A.M. (2017d), "Size-dependent vibration and bending analyses of the piezomagnetic three-layer nanobeams", Appl. Phys. A., 123(3), 202.
  15. Arefi, M. and Zenkour, A.M. (2017e), "Vibration and bending analysis of a sandwich microbeam with two integrated piezomagnetic face-sheets", Compos. Struct., 159, 479-490. https://doi.org/10.1016/j.compstruct.2016.09.088
  16. Asghari, M., et al. (2010), "A nonlinear Timoshenko beam formulation based on the modified couple stress theory", Int. J. Eng Sci., 48, 1749-1761. https://doi.org/10.1016/j.ijengsci.2010.09.025
  17. Ashrafi, B. and Hubert, P. (2006), "Vengallatore S. Carbon nanotube-reinforced composites as structural materials for microactuators in microelectromechanical systems", Nanotechnology, 17, 4895-4903. https://doi.org/10.1088/0957-4484/17/19/019
  18. Ebrahimi, F. and Salari, E. (2015), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos Part B: Eng., 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010
  19. El-Borgi, S., Fernandes, R. and Reddy J.N. (2015). "Nonlocal Free and Forced Vibrations of Graded Nanobeams Resting on a Nonlinear Elastic Foundation", Int. J. Nonlinear. Mech. 77, 348-363. https://doi.org/10.1016/j.ijnonlinmec.2015.09.013
  20. Esawi, A. and Farag, M. (2007), "Carbon nanotube reinforced composites: potential and current challenges", Mater. Design, 28, 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
  21. Fidelusa, J.D., Wiesela, E., Gojnyb, F.H., Schulteb, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. Part A-Appl., 36, 1555-1561. https://doi.org/10.1016/j.compositesa.2005.02.006
  22. Formica, G., Lacarbonara, W. and Alessi, R. (2010), "Vibrations of carbon nanotube-reinforced composites", J. Sound. Vib., 329, 1875-1889. https://doi.org/10.1016/j.jsv.2009.11.020
  23. Gheshlaghi, B. and Hasheminejad, S.M. (2011), "Surface effects on nonlinear free vibration of nanobeams", Compos. Part. B., 42, 934-937. https://doi.org/10.1016/j.compositesb.2010.12.026
  24. Gholami, R., Darvizeh, A., Ansari, R. and Hosseinzadeh, M. (2014), "Sizedependent axial buckling analysis of functionally graded circular cylindrical microshells based on the modified strain gradient elasticity theory", Meccanica. 49(7), 1679-1695. https://doi.org/10.1007/s11012-014-9944-7
  25. Ghorbanpour Arani, A., Kolahchi, R. and Esmailpour, M. (2016), "Nonlinear vibration analysis of piezoelectric plates reinforced with carbon nanotubes using DQM", Smart. Struct. Syst., 18(4), 787-800. https://doi.org/10.12989/sss.2016.18.4.787
  26. Ghorbanpour Arani, A., Vossough, H. and Kolahchi, R. (2015), "Nonlinear vibration and instability of a visco-Pasternak coupled double-DWBNNTs-reinforced microplate system conveying microflow", J. Mech. Eng. Sci., 1-17.
  27. Ghorbanpour Arani, A., Vossough, H., Kolahchi, R. and Mosallaie Barzoki, A.A. (2012), "Electro-thermo nonlocal nonlinear vibration in an embedded polymeric piezoelectric micro plate reinforced by DWBNNTs using DQM", J. Mech. Sci. Tech., 26 (10), 3047-3057. https://doi.org/10.1007/s12206-012-0816-6
  28. Hosseini, S.M., Mareishi, S., Kalhori, H. and Rafiee, M. (2014). "Large Amplitude Free and Forced Oscillations of Functionally Graded Beams", Mech. Adv. Mater. Struct., 21, 255-262. https://doi.org/10.1080/15376494.2012.680670
  29. Jam, J.E. and Kiani, Y. (2015), "Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment", Compos. Struct., 132, 35-43. https://doi.org/10.1016/j.compstruct.2015.04.045
  30. Jung, W.Y. and Han, S.C. (2015), "Static and eigenvalue problems of sigmoid functionally graded materials (s-fgm) micro-scale plates using the modified couple stress theory", Appl. Math. Model., 39(12), 3506-3524. https://doi.org/10.1016/j.apm.2014.11.056
  31. Kanani, A.S., Niknam, H., Ohadi, A.R. and Aghdam, M.M. (2014), "Effect of nonlinear elastic foundation on large amplitude free and forced vibration of functionally graded beam", Compos. Struct., 115, 60-68. https://doi.org/10.1016/j.compstruct.2014.04.003
  32. Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92, 676-683. https://doi.org/10.1016/j.compstruct.2009.09.024
  33. Kiani, K. (2015), "Wave characteristics in aligned forests of single-walled carbon nanotubes using nonlocal discrete and continuous theories", Int. J. Mech. Sci., 90, 278-309. https://doi.org/10.1016/j.ijmecsci.2014.11.011
  34. Li, L. and Hu, Y. (2016), "Wave propagation in fluid-conveying viscoelastic carbon nanotubes based on nonlocal strain gradient theory", Comp. Mater. Sci., 112, 282-288. https://doi.org/10.1016/j.commatsci.2015.10.044
  35. Li, L, Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct., 133, 1079-1092. https://doi.org/10.1016/j.compstruct.2015.08.014
  36. Li, L., Hu, Y. and Ling, L. (2015), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E, 75, 118-124.
  37. Li, Y., Wang, S., Wang, Q. and Xing, M. (2016), "Molecular dynamics simulations of tribology properties of NBR (Nitrile-Butadiene Rubber) /carbon nanotube composites", Compos. Part B: Eng., 97, 62-67. https://doi.org/10.1016/j.compositesb.2016.04.053
  38. Liew, K.M., Hu, Y.G. and He, X.Q. (2008), "Flexural wave propagation in single-walled carbon nanotubes", J. Comput. Theor. Nanosci., 5(4), 581-586. https://doi.org/10.1166/jctn.2008.019
  39. Liew, K.M., Yang, J. and Kitipornchai, S. (2003), "Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading", Int. J. Solids. Struct., 40, 3869-3892. https://doi.org/10.1016/S0020-7683(03)00096-9
  40. Mohammadimehr, M. and Mostafavifar, M. (2016), "Free vibration analysis of sandwich plate with a transversely flexible core and FG-CNTs reinforced nanocomposite face sheets subjected to magnetic field and temperature-dependent material properties using SGT", Compos. Part B: Eng., 94, 253-270. https://doi.org/10.1016/j.compositesb.2016.03.030
  41. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015), "Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method", Compos. Struct., 131, 654-671. https://doi.org/10.1016/j.compstruct.2015.05.077
  42. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2016), "Modified strain gradient Reddy rectangular plate model for biaxial buckling and bending analysis of doublecoupled piezoelectric polymeric nanocomposite reinforced by FG-SWNT", Compos. Part B: Eng., 87, 132-148 https://doi.org/10.1016/j.compositesb.2015.10.007
  43. Natarajan, S., Haboussi, M. and Manickam, G. (2014), "Application of higher-order structural theory to bending and free vibration analysis of sandwich plates with CNT reinforced composite", Compos. Struct., 113, 197-207. https://doi.org/10.1016/j.compstruct.2014.03.007
  44. Nateghi, A. and Salamat-talab, M. (2013), "Thermal effect on size dependent behavior of functionally graded microbeams based on modified couple stress theory", Compos. Struct., 96, 97-110. https://doi.org/10.1016/j.compstruct.2012.08.048
  45. Nayfeh, A.H. and Mook, D.T. (2008), Nonlinear Oscillations, Wiley-VCH.
  46. Nazemnezhad, R., Hosseini and Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006
  47. Niknam, H. and Aghdam, M.M. (2015), "A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation", Compos. Struct., 119, 452-462. https://doi.org/10.1016/j.compstruct.2014.09.023
  48. Pang, M., Zhang, Y.Q. and Chen, W.Q. (2015), "Transverse wave propagation in viscoelastic single-walled carbon nanotubes with small scale and surface effects", J. Appl. Phys., 117, 024305. https://doi.org/10.1063/1.4905852
  49. Pirbodaghi, T., Ahmadian, M.T. and Fesanghary, M. (2009), "On the homotopy analysis method for non-linear vibration of beams", Mech. Res. Commun., 36, 143-148. https://doi.org/10.1016/j.mechrescom.2008.08.001
  50. Rafiee, M., He, X.Q. and Liew, K.M. (2014), "Non-linear dynamic stability of piezoelectric functionally graded carbon nanotubereinforced composite plates with initial geometric imperfection", Int. J. Nonlinear. Mech., 59, 37-51. https://doi.org/10.1016/j.ijnonlinmec.2013.10.011
  51. Rafiee, M., Yang, J. and Kitipornchai, S. (2013), "Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers", Compos. Struct., 96, 716-725. https://doi.org/10.1016/j.compstruct.2012.10.005
  52. Rahmani, O. and Jandaghian, A.A. (2015), "Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory", Appl. Phys. A., 119(3), 1019-1032. https://doi.org/10.1007/s00339-015-9061-z
  53. Reddy, J.N., El-Borgi, S. and Romanoff, J. (2014), "Non-linear analysis of functionally graded microbeams using eringens nonlocal differential model", Int. J. Nonlinear. Mech., 67, 308-318. https://doi.org/10.1016/j.ijnonlinmec.2014.09.014
  54. Salehipour, H., Shahidi, A.R. and Nahvi, H. (2015). "Modified nonlocal elasticity theory for functionally graded materials", Int. J. Eng. Sci., 90, 44-57. https://doi.org/10.1016/j.ijengsci.2015.01.005
  55. Setoodeh, A. and Afrahim, S. (2014), "Nonlinear dynamic analysis of fg micro-pipes conveying fluid based on strain gradient theory", Compos. Struct., 116, 128-135. https://doi.org/10.1016/j.compstruct.2014.05.013
  56. Shakeri, M., Akhlaghi, M. and Hoseini, S.M. (2006), "Vibration and radial wave propagation velocity in functionally graded thick hollow cylinder", Compos. Struct., 76(1), 174-181. https://doi.org/10.1016/j.compstruct.2006.06.022
  57. Shen, H.S. and Zhang, C.L. (2010). "Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite plates", Mater. Design, 31, 3403-3411. https://doi.org/10.1016/j.matdes.2010.01.048
  58. Shen, H.S. and Zhang, C.L. (2012), "Non-linear analysis of functionally graded fiber reinforced composite laminated plates, Part I: Theory and solutions", Int. J. Nonlinear. Mech., 47, 1045-1054. https://doi.org/10.1016/j.ijnonlinmec.2012.05.005
  59. Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
  60. Tajalli, S.A., Rahaeifard, M., Kahrobaiyan, M.H., Movahhedy, M.R., Akbari, J. and Ahmadian, M.T. (2013), "Mechanical behavior analysis of size-dependent micro-scaled functionally graded timoshenko beams by strain gradient elasticity theory", Compos. Struct., 102, 72-80. https://doi.org/10.1016/j.compstruct.2013.03.001
  61. Wattanasakulpong, N. and Ungbhakorn, V. (2013), "Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation", Comp. Mater. Sci., 71, 201-208. https://doi.org/10.1016/j.commatsci.2013.01.028
  62. Wu, H., Yang, J. and Kitipornchai, S. (2016), "Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections SGT", Compos. Part B: Eng., 90, 86-96. https://doi.org/10.1016/j.compositesb.2015.12.007
  63. Zenkour, A.M. and Arefi, M. (2017), "Nonlocal transient electrothermomechanical vibration and bending analysis of a functionally graded piezoelectric single-layered nanosheet rest on visco-Pasternak foundation", J. Therm. Stresses., 40, 167-184. https://doi.org/10.1080/01495739.2016.1229146
  64. Zhang, Z.J. and Paulino, G.H. (2007), "Wave propagation and dynamic analysis of smoothly graded heterogeneous continua using graded finite elements", Int. J. Solids. Struct., 44(11), 3601-3626. https://doi.org/10.1016/j.ijsolstr.2005.05.061

Cited by

  1. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157