Browse > Article
http://dx.doi.org/10.12989/scs.2019.33.3.403

Free vibration of AFG beams with elastic end restraints  

Bambaeechee, Mohsen (Department of Civil Engineering, Faculty of Engineering, Quchan University of Technology)
Publication Information
Steel and Composite Structures / v.33, no.3, 2019 , pp. 403-432 More about this Journal
Abstract
Axially functionally graded (AFG) beams are a new class of composite structures that have continuous variations in material and/or geometrical parameters along the axial direction. In this study, the exact analytical solutions for the free vibration of AFG and uniform beams with general elastic supports are obtained by using Euler-Bernoulli beam theory. The elastic supports are modeled with linear rotational and lateral translational springs. Moreover, the material and/or geometrical properties of the AFG beams are assumed to vary continuously and together along the length of the beam according to the power-law forms. Accordingly, the accuracy, efficiency and capability of the proposed formulations are demonstrated by comparing the responses of the numerical examples with the available solutions. In the following, the effects of the elastic end restraints and AFG parameters, namely, gradient index and gradient coefficient, on the values of the first three natural frequencies of the AFG and uniform beams are investigated comprehensively. The analytical solutions are presented in tabular and graphical forms and can be used as the benchmark solutions. Furthermore, the results presented herein can be utilized for design of inhomogeneous beams with various supporting conditions.
Keywords
axially functionally graded beams; elastic supports; natural frequencies; free vibration; exact analysis; Euler-Bernoulli beam theory;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Calio, I. and Elishakoff, I. (2005), "Closed-form solutions for axially graded beam-columns", J. Sound Vib., 280(3), 1083-1094. https://doi.org/10.1016/j.jsv.2004.02.018   DOI
2 Cao, D., Gao, Y., Yao, M. and Zhang, W. (2018), "Free vibration of axially functionally graded beams using the asymptotic development method", Eng. Struct., 173, 442-448. https://doi.org/10.1016/j.engstruct.2018.06.111   DOI
3 Conway, H.D. and Dubil, J.F. (1965), "Vibration frequencies of truncated-cone and wedge beams", J. Appl. Mech., 32(4), 932-934. https://doi.orgu/10.1115/1.3627338   DOI
4 Ghorbanpour Arani, A. and Kiani, F. (2018), "Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions", Steel Compos. Struct., Int. J., 28(2), 149-165. https://doi.org/scs.2018.28.2.149
5 Goel, R.P. (1976), "Transverse vibrations of tapered beams", J. Sound Vib., 47(1), 1-7. https://doi.org/10.1016/0022-460X(76)90403-X   DOI
6 Taha, M. and Essam, M. (2013), "Stability behavior and free vibration of tapered columns with elastic end restraints using the DQM method", Ain Shams Eng. J., 4(3), 515-521. https://doi.org/10.1016/j.asej.2012.10.005   DOI
7 Simsek, M., Kocaturk, T. and Akbas, S.D. (2012), "Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load", Compos. Struct., 94(8), 2358-2364. https://doi.org/10.1016/j.compstruct.2012.03.020   DOI
8 Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015   DOI
9 Singh, K.V., Li, G. and Pang, S.-S. (2006), "Free vibration and physical parameter identification of non-uniform composite beams", Compos. Struct., Int. J., 74(1), 37-50. https://doi.org/10.1016/j.compstruct.2005.03.015   DOI
10 Tang, A.-Y., Wu, J.-X., Li, X.-F., and Lee, K.Y. (2014), "Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams", Int. J. Mech. Sci., 89, 1-11. https://doi.org/10.1016/j.ijmecsci.2014.08.017   DOI
11 Hashemi, S.H., Khaniki, H.B. and Khaniki, H.B. (2016), "Free vibration analysis of functionally graded materials non-uniform beams", Int. J. Eng. - Trans. C Asp., 29(12), 1734-1740. https://doi.org/10.5829/idosi.ije.2016.29.12c.12
12 Grossi, R.O. and Albarracin, C.M. (2003), "Eigenfrequencies of generally restrained beams", J. Appl. Math., 2003(10), 503-516. https://doi.org/10.1155/S1110757X03203065   DOI
13 Grossi, R.O. and Bhat, R.B. (1991), "A note on vibrating tapered beams", J. Sound Vib., 147(1), 174-178. https://doi.org/10.1016/0022-460X(91)90693-E   DOI
14 Guo, S. and Yang, S. (2014), "Transverse vibrations of arbitrary non-uniform beams", Appl. Math. Mech., 35(5), 607-620. https://doi.org/10.1007/s10483-014-1816-7   DOI
15 Hein, H. and Feklistova, L. (2011), "Free vibrations of non-uniform and axially functionally graded beams using Haar wavelets", Eng. Struct., 33(12), 3696-3701. https://doi.org/10.1016/j.engstruct.2011.08.006   DOI
16 Ho, S.H. and Chen, C.K. (1998), "Analysis of general elastically end restrained non-uniform beams using differential transform", Appl. Math. Model., 22(4-5), 219-234. https://doi.org/10.1016/S0307-904X(98)10002-1   DOI
17 Hsu, J.-C., Lai, H.-Y. and Chen, C.K. (2008), "Free vibration of non-uniform Euler-Bernoulli beams with general elastically end constraints using Adomian modified decomposition method", J. Sound Vib., 318(4), 965-981. https://doi.org/10.1016/j.jsv.2008.05.010   DOI
18 Xing, J.-Z. and Wang, Y.-G. (2013), "Free vibrations of a beam with elastic end restraints subject to a constant axial load", Arch. Appl. Mech., 83(2), 241-252. https://doi.org/10.1007/s00419-012-0649-x   DOI
19 Wang, C.Y. and Wang, C.M. (2013a), "Exact vibration solutions for a class of nonuniform beams", J. Eng. Mech., 139(7), 928-931. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000535   DOI
20 Wang, C.Y. and Wang, C.M. (2013b), Structural Vibration: Exact Solutions for Strings, Membranes, Beams, and Plates, CRC Press, Boca Raton, FL, USA.
21 Yuan, J., Pao, Y.-H. and Chen, W. (2016), "Exact solutions for free vibrations of axially inhomogeneous Timoshenko beams with variable cross section", Acta Mech., 227(9), 2625-2643. https://doi.org/10.1007/s00707-016-1658-6   DOI
22 Downs, B. (1978), "Reference frequencies for the validation of numerical solutions of transverse vibrations of non-uniform beams", J. Sound Vib., 61(1), 71-78. https://doi.org/10.1016/0022-460X(78)90042-1   DOI
23 Cortinez, V.H. and Laura, P.a.A. (1994), "An extension of Timoshenko's method and its application to buckling and vibration problems", J. Sound Vib., 169(1), 141-144. https://doi.org/10.1006/jsvi.1994.1526   DOI
24 De Rosa, M.A. and Auciello, N.M. (1996), "Free vibrations of tapered beams with flexible ends", Comput. Struct., 60(2), 197-202. https://doi.org/10.1016/0045-7949(95)00397-5   DOI
25 Downs, B. (1977), "Transverse vibrations of cantilever beams having unequal breadth and depth tapers", J. Appl. Mech., 44(4), 737-742. https://doi.org/10.1115/1.3424165   DOI
26 Ebrahimi, F., and Dashti, S. (2015), "Free vibration analysis of a rotating non-uniform functionally graded beam", Steel Compos. Struct., Int. J., 19(5), 1279-1298. https://doi.org/10.12989/scs.2015.19.5.1279   DOI
27 Farajpour, A., Ghayesh, M.H. and Farokhi, H. (2018), "A review on the mechanics of nanostructures", Int. J. Eng. Sci., 133, 231-263. https://doi.org/10.1016/j.ijengsci.2018.09.006   DOI
28 Ece, M.C., Aydogdu, M. and Taskin, V. (2007), "Vibration of a variable cross-section beam", Mech. Res. Commun., 34(1), 78-84. https://doi.org/10.1016/j.mechrescom.2006.06.005   DOI
29 Elishakoff, I. (2004), Eigenvalues of Inhomogeneous Structures: Unusual Closed-Form Solutions, CRC Press, Boca Raton, FL, USA.
30 Elishakoff, I. and Guede, Z. (2004), "Analytical polynomial solutions for vibrating axially graded beams", Mech. Adv. Mater. Struct., 11(6), 517-533. https://doi.org/10.1080/15376490490452669   DOI
31 Farokhi, H. and Ghayesh, M.H. (2015a), "Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory", Int. J. Mech. Sci., 90, 133-144. https://doi.org/10.1016/j.ijmecsci.2014.11.002   DOI
32 Kumar, S., Mitra, A. and Roy, H. (2015), "Geometrically nonlinear free vibration analysis of axially functionally graded taper beams", Eng. Sci. Technol. Int. J., 18(4), 579-593. https://doi.org/10.1016/j.jestch.2015.04.003   DOI
33 Huang, Y. and Li, X.-F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform crosssection", J. Sound Vib., 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029   DOI
34 Huang, Y. and Rong, H.-W. (2017), "Free vibration of axially inhomogeneous beams that are made of functionally graded materials", Int. J. Acoust. Vib., 22(1), 68-73. https://doi.org/10.20855/ijav.2017.22.1452
35 Zeighampour, H. and Tadi Beni, Y. (2015), "Free vibration analysis of axially functionally graded nanobeam with radius varies along the length based on strain gradient theory", Appl. Math. Model., 39(18), 5354-5369. https://doi.org/10.1016/j.apm.2015.01.015   DOI
36 Zhao, Y., Huang, Y. and Guo, M. (2017), "A novel approach for free vibration of axially functionally graded beams with non-uniform cross-section based on Chebyshev polynomials theory", Compos. Struct., 168, 277-284. https://doi.org/10.1016/j.compstruct.2017.02.012   DOI
37 Kiani, K. (2016), "Free dynamic analysis of functionally graded tapered nanorods via a newly developed nonlocal surface energy-based integro-differential model", Compos. Struct., 139, 151-166. https://doi.org/10.1016/j.compstruct.2015.11.059   DOI
38 Kim, H.K. and Kim, M.S. (2001), "Vibration of beams with generally restrained boundary conditions using fourier series", J. Sound Vib., 245(5), 771-784. https://doi.org/10.1006/jsvi.2001.3615   DOI
39 Kukla, S. and Rychlewska, J. (2016), "An approach for free vibration analysis of axially graded beams", J. Theor. Appl. Mech., 54(3), 859-870. https://doi.org/10.15632/jtam-pl.54.3.859   DOI
40 Lai, H.-Y., Chen, C.K. and Hsu, J.-C. (2008), "Free vibration of non-uniform Euler-Bernoulli beams by the Adomian modified decomposition method", CMES - Comput. Model. Eng. Sci., 34(1), 87-115. https://doi.org/10.3970/cmes.2008.034.087
41 Lee, S.Y. and Kuo, Y.H. (1992), "Exact solutions for the analysis of general elastically restrained nonuniform beams", J. Appl. Mech., 59(2S), S205-S212. https://doi.org/10.1115/1.2899490   DOI
42 Lee, J.W. and Lee, J.Y. (2017), "Free vibration analysis of functionally graded Bernoulli-Euler beams using an exact transfer matrix expression", Int. J. Mech. Sci., 122, 1-17. https://doi.org/10.1016/j.ijmecsci.2017.01.011   DOI
43 Farokhi, H., Ghayesh, M.H. and Amabili, M. (2013a), "Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory", Int. J. Eng. Sci., 68, 11-23. https://doi.org/10.1016/j.ijengsci.2013.03.001   DOI
44 Farokhi, H. and Ghayesh, M.H. (2015b), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33. https://doi.org/10.1016/j.ijengsci.2015.02.005   DOI
45 Farokhi, H. and Ghayesh, M.H. (2018a), "Nonlinear mechanics of electrically actuated microplates", Int. J. Eng. Sci., 123, 197-213. https://doi.org/10.1016/j.ijengsci.2017.08.017   DOI
46 Farokhi, H. and Ghayesh, M.H. (2018b), "Supercritical nonlinear parametric dynamics of Timoshenko microbeams", Commun. Nonlinear Sci. Numer. Simul., 59, 592-605. https://doi.org/10.1016/j.cnsns.2017.11.033   DOI
47 Firouz-Abadi, R.D., Rahmanian, M. and Amabili, M. (2013), "Exact solutions for free vibrations and buckling of double tapered columns with elastic foundation and tip mass", J. Vib. Acoust., 135(5), 051017-1-10. https://doi.org/10.1115/1.4023991   DOI
48 Farokhi, H., Ghayesh, M.H. and Amabili, M. (2013b), "Nonlinear resonant behavior of microbeams over the buckled state", Appl. Phys. A, 113(2), 297-307. https://doi.org/10.1007/s00339-013-7894-x.   DOI
49 Farokhi, H., Ghayesh, M.H. and Hussain, S. (2016), "Large-amplitude dynamical behaviour of microcantilevers", Int. J. Eng. Sci., 106, 29-41. https://doi.org/10.1016/j.ijengsci.2016.03.002   DOI
50 Farokhi, H., Ghayesh, M.H., Gholipour, A. and Hussain, S. (2017), "Motion characteristics of bilayered extensible Timoshenko microbeams", Int. J. Eng. Sci., 112, 1-17. https://doi.org/10.1016/j.ijengsci.2016.09.007   DOI
51 Galeban, M.R., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), "Free vibration of functionally graded thin beams made of saturated porous materials", Steel Compos. Struct., Int. J., 21(5), 999-1016. https://doi.org/10.12989/scs.2016.21.5.999   DOI
52 Lohar, H., Mitra, A. and Sahoo, S. (2016b), "Geometric nonlinear free vibration of axially functionally graded non-uniform beams supported on elastic foundation", Curved Layer. Struct., 3(1), 223-239. https://doi.org/10.1515/cls-2016-0018
53 Lee, S.Y. and Lint, S.M. (1992), "Exact vibration solutions for nonuniform Timoshenko beams with attachments", AIAA J., 30(12), 2930-2934. https://doi.org/10.2514/3.48979   DOI
54 Lee, B.K., Lee, J.K., Lee, T.E. and Kim, S.G. (2002), "Free vibrations of tapered beams with general boundary condition", KSCE J. Civ. Eng., 6(3), 283-288. https://doi.org/10.1007/BF02829150   DOI
55 Lee, B.-K., Kim, S.-K., Lee, T.-E. and Ahn, D.-S. (2003), "Free vibrations of tapered beams laterally restrained by elastic springs", KSCE J. Civ. Eng., 7(2), 193-199. https://doi.org/10.1007/BF02841975   DOI
56 Li, W.L. (2000), "Free vibrations of beams with general boundary conditions", J. Sound Vib., 237(4), 709-725. https://doi.org/10.1006/jsvi.2000.3150   DOI
57 Lohar, H., Mitra, A. and Sahoo, S. (2016a), "Natural frequency and mode shapes of exponential tapered AFG beams on elastic foundation", Int. Front. Sci. Lett., 9, 9-25. https://doi.org/10.18052/www.scipress.com/IFSL.9.9   DOI
58 Mabie, H.H. and Rogers, C.B. (1968), "Transverse vbrations of tapered cantilever beams with end support", J. Acoust. Soc. Am., 44(6), 1739-1741. https://doi.org/10.1121/1.1911327   DOI
59 Naguleswaran, S. (1994), "A direct solution for the transverse vibration of Euler-Bernoulli wedge and cone beams", J. Sound Vib., 172(3), 289-304. https://doi.org/10.1006/jsvi.1994.1176   DOI
60 Nguyen, D.K. and Tran, T.T. (2018), "Free vibration of tapered BFGM beams using an efficient shear deformable finite element model", Steel Compos. Struct., Int. J., 29(3), 363-377. https://doi.org/scs.2018.29.3.363
61 Rahmani, O., Hosseini, S., Ghoytasi, I. and Golmohammadi, H. (2018), "Free vibration of deep curved FG nano-beam based on modified couple stress theory", Steel Compos. Struct., Int. J., 26(5), 607-620. https://doi.org/10.12989/scs.2018.26.5.607
62 Abdelghany, S.M., Ewis, K.M., Mahmoud, A.A. and Nassar, M.M. (2015), "Vibration of a circular beam with variable cross sections using differential transformation method", Beni-Suef Univ. J. Basic Appl. Sci., 4(3), 185-191. https://doi.org/10.1016/j.bjbas.2015.05.006   DOI
63 Nikkhah Bahrami, M., Khoshbayani Arani, M. and Rasekh Saleh, N. (2011), "Modified wave approach for calculation of natural frequencies and mode shapes in arbitrary non-uniform beams", Sci. Iran., 18(5), 1088-1094. https://doi.org/10.1016/j.scient.2011.08.004   DOI
64 Abrate, S. (1995), "Vibration of non-uniform rods and beams", J. Sound Vib., 185(4), 703-716. https://doi.org/10.1006/jsvi.1995.0410   DOI
65 Ghayesh, M.H. (2018a), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004   DOI
66 Ghayesh, M.H. (2018b), "Mechanics of tapered AFG shear-deformable microbeams", Microsyst. Technol., 24(4), 1743-1754. https://doi.org/10.1007/s00542-018-3764-y   DOI
67 Ghayesh, M.H. (2018c), "Functionally graded microbeams: Simultaneous presence of imperfection and viscoelasticity", Int. J. Mech. Sci., 140, 339-350. https://doi.org/10.1016/j.ijmecsci.2018.02.037   DOI
68 Ghayesh, M.H. (2018d), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Model., 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017   DOI
69 Ghayesh, M.H. and Farajpour, A. (2019), "A review on the mechanics of functionally graded nanoscale and microscale structures", Int. J. Eng. Sci., 137, 8-36. https://doi.org/10.1016/j.ijengsci.2018.12.001   DOI
70 Palacio-Betancur, A. and Aristizabal-Ochoa, J.D. (2019), "Statics, stability and vibration of non-prismatic linear beam-columns with semirigid connections on elastic foundation", Eng. Struct., 181, 89-94. https://doi.org/10.1016/j.engstruct.2018.12.002   DOI
71 Rajasekaran, S. (2013), "Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based dynamic stiffness approach", Meccanica, 48(5), 1053-1070. https://doi.org/10.1007/s11012-012-9651-1   DOI
72 Rao, C.K. and Mirza, S. (1989), "A note on vibrations of generally restrained beams", J. Sound Vib., 130(3), 453-465. https://doi.org/10.1016/0022-460X(89)90069-2   DOI
73 Rezaiee-Pajand, M. and Hozhabrossadati, S.M. (2016), "Analytical and numerical method for free vibration of double-axially functionally graded beams", Compos. Struct., 152, 488-498. https://doi.org/10.1016/j.compstruct.2016.05.003   DOI
74 Rezaiee-Pajand, M. and Masoodi, A.R. (2018), "Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections", J. Vib. Control, 24(9), 1787-1808. https://doi.org/10.1177/1077546316668932   DOI
75 Rossit, C.A., Bambill, D.V. and Gilardi, G.J. (2017), "Free vibrations of AFG cantilever tapered beams carrying attached masses", Struct. Eng. Mech., Int. J., 61(5), 685-691. https://doi.org/10.12989/sem.2017.61.5.685   DOI
76 Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013b), "Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.003   DOI
77 Ghayesh, M.H. and Farokhi, H. (2015a), "Nonlinear dynamics of microplates", Int. J. Eng. Sci., 86, 60-73. https://doi.org/10.1016/j.ijengsci.2014.10.004   DOI
78 Ghayesh, M.H. and Farokhi, H. (2015b), "Chaotic motion of a parametrically excited microbeam", Int. J. Eng. Sci., 96, 34-45. https://doi.org/10.1016/j.ijengsci.2015.07.004   DOI
79 Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013a), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", Int. J. Eng. Sci., 63, 52-60. https://doi.org/10.1016/j.ijengsci.2012.12.001   DOI
80 Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013c), "Nonlinear dynamics of a microscale beam based on the modified couple stress theory", Compos. Part B Eng., 50, 318-324. https://doi.org/10.1016/j.compositesb.2013.02.021   DOI
81 Attarnejad, R., Manavi, N. and Farsad, A. (2006), "Exact solution for the free vibration of a tapered beam with elastic end rotational restraints", Comput. Methods, (G.R. Liu, V.B.C. Tan, and X. Han, Eds.), Springer Netherlands, 1993-2003. https://doi.org/10.1007/978-1-4020-3953-9_146
82 Akgoz, B. and Civalek, O. (2013), "Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory", Compos. Struct., 98, 314-322. https://doi.org/10.1016/j.compstruct.2012.11.020   DOI
83 Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006   DOI
84 Atmane, H.A., Tounsi, A., Ziane, N. and Mechab, I. (2011), "Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section", Steel Compos. Struct., Int. J., 11(6), 489-504. https://doi.org/10.12989/scs.2011.11.6.489   DOI
85 Attarnejad, R., Shahba, A. and Eslaminia, M. (2011), "Dynamic basic displacement functions for free vibration analysis of tapered beams", J. Vib. Control, 17(14), 2222-2238. https://doi.org/10.1177/1077546310396430   DOI
86 Auciello, N.M. (1995), A comment on "A note on vibrating tapered beams", J. Sound Vib., 187, 724-726. https://doi.org/10.1006/jsvi.1995.0557   DOI
87 Ghayesh, M.H., Farokhi, H. and Amabili, M. (2014), "In-plane and out-of-plane motion characteristics of microbeams with modal interactions", Compos. Part B Eng., 60, 423-439. https://doi.org/10.1016/j.compositesb.2013.12.074   DOI
88 Auciello, N.M. (2001), "On the transverse vibrations of non-uniform beams with axial loads and elastically restrained ends", Int. J. Mech. Sci., 43(1), 193-208. https://doi.org/10.1016/S0020-7403(99)00110-1   DOI
89 Auciello, N.M. and Ercolano, A. (1997), "Exact solution for the transverse vibration of a beam a part of which is a taper beam and other part is a uniform beam", Int. J. Solids Struct., 34(17), 2115-2129. https://doi.org/10.1016/S0020-7683(96)00136-9   DOI
90 Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013d), "Nonlinear behaviour of electrically actuated MEMS resonators", Int. J. Eng. Sci., 71, 137-155. https://doi.org/10.1016/j.ijengsci.2013.05.006   DOI
91 Ghayesh, M.H., Farokhi, H. and Alici, G. (2016), "Size-dependent performance of microgyroscopes", Int. J. Eng. Sci., 100, 99-111. https://doi.org/10.1016/j.ijengsci.2015.11.003   DOI
92 Shafiei, N., Kazemi, M., Safi, M. and Ghadiri, M. (2016), "Nonlinear vibration of axially functionally graded non-uniform nanobeams", Int. J. Eng. Sci., 106, 77-94. https://doi.org/10.1016/j.ijengsci.2016.05.009   DOI
93 Salinic, S., Obradovic, A. and Tomovic, A. (2018), "Free vibration analysis of axially functionally graded tapered, stepped, and continuously segmented rods and beams", Compos. Part B Eng., 150, 135-143. https://doi.org/10.1016/j.compositesb.2018.05.060   DOI
94 Sarkar, K. and Ganguli, R. (2014), "Closed-form solutions for axially functionally graded Timoshenko beams having uniform cross-section and fixed-fixed boundary condition", Compos. Part B Eng., 58, 361-370. https://doi.org/10.1016/j.compositesb.2013.10.077   DOI
95 Sato, K. (1980), "Transverse vibrations of linearly tapered beams with ends restrained elastically against rotation subjected to axial force", Int. J. Mech. Sci., 22(2), 109-115. https://doi.org/10.1016/0020-7403(80)90047-8   DOI
96 Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Model., 36(7), 3094-3111. https://doi.org/10.1016/j.apm.2011.09.073   DOI
97 Shahba, A., Attarnejad, R. and Hajilar, S. (2011a), "Free vibration and stability of axially functionally graded tapered Euler-Bernoulli beams", Shock Vib., 18(5), 683-696. https://doi.org/10.3233/SAV-2010-0589   DOI
98 Ghayesh, M.H., Farokhi, H., Gholipour, A. and Tavallaeinejad, M. (2018), "Nonlinear oscillations of functionally graded microplates", Int. J. Eng. Sci., 122, 56-72. https://doi.org/10.1016/j.ijengsci.2017.03.014   DOI
99 Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017a), "Oscillations of functionally graded microbeams", Int. J. Eng. Sci., 110, 35-53. https://doi.org/10.1016/j.ijengsci.2016.09.011   DOI
100 Ghayesh, M.H., Farokhi, H. and Gholipour, A. (2017b), "Vibration analysis of geometrically imperfect three-layered shear-deformable microbeams", Int. J. Mech. Sci., 122, 370-383. https://doi.org/10.1016/j.ijmecsci.2017.01.001   DOI
101 Ghazaryan, D., Burlayenko, V.N., Avetisyan, A. and Bhaskar, A. (2018), "Free vibration analysis of functionally graded beams with non-uniform cross-section using the differential transform method", J. Eng. Math., 110(1), 97-121. https://doi.org/10.1007/s10665-017-9937-3   DOI
102 Gholipour, A., Farokhi, H. and Ghayesh, M.H. (2015), "In-plane and out-of-plane nonlinear size-dependent dynamics of microplates", Nonlinear Dyn., 79(3), 1771-1785. https://doi.org/10.1007/s11071-014-1773-7   DOI
103 Banerjee, J.R. and Ananthapuvirajah, A. (2018), "Free vibration of functionally graded beams and frameworks using the dynamic stiffness method", J. Sound Vib., 422, 34-47. https://doi.org/10.1016/j.jsv.2018.02.010   DOI
104 Shahba, A., Attarnejad, R., Marvi, M.T. and Hajilar, S. (2011b), "Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions", Compos. Part B Eng., 42(4), 801-808. https://doi.org/10.1016/j.compositesb.2011.01.017
105 Shvartsman, B.S. and Majak, J. (2016), "Free vibration analysis of axially functionally graded beams using method of initial parameters in differential form", Adv. Theor. Appl. Mech., 9(1), 31-42. https://doi.org/10.12988/atam.2016.635   DOI
106 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603
107 Aydogdu, M. (2008), "Semi-inverse method for vibration and buckling of axially functionally graded beams", J. Reinf. Plast. Compos., 27(7), 683-691. https://doi.org/10.1177/0731684407081369   DOI
108 Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007   DOI
109 Banerjee, J.R. and Williams, F.W. (1985), "Exact Bernoulli-Euler dynamic stiffness matrix for a range of tapered beams", Int. J. Numer. Methods Eng., 21(12), 2289-2302. https://doi.org/10.1002/nme.1620211212   DOI
110 Boiangiu, M., Ceausu, V. and Untaroiu, C.D. (2016), "A transfer matrix method for free vibration analysis of Euler-Bernoulli beams with variable cross section", J. Vib. Control, 22(11), 2591-2602. https://doi.org/10.1177/1077546314550699   DOI