• Title/Summary/Keyword: Euclidean 3-Space

Search Result 167, Processing Time 0.025 seconds

Machining Tool Path Generation for Point Set

  • Park, Se-Youn;Shin, Ha-Yong
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.45-53
    • /
    • 2009
  • As the point sampling technology evolves rapidly, there has been increasing need in generating tool path from dense point set without creating intermediate models such as triangular meshes or surfaces. In this paper, we present a new tool path generation method from point set using Euclidean distance fields based on Algebraic Point Set Surfaces (APSS). Once an Euclidean distance field from the target shape is obtained, it is fairly easy to generate tool paths. In order to compute the distance from a point in the 3D space to the point set, we locally fit an algebraic sphere using moving least square method (MLS) for accurate and simple calculation. This process is repeated until it converges. The main advantages of our approach are : (1) tool paths are computed directly from point set without making triangular mesh or surfaces and their offsets, and (2) we do not have to worry about no local interference at concave region compared to the other methods using triangular mesh or surface model. Experimental results show that our approach can generate accurate enough tool paths from a point set in a robust manner and efficiently.

STUDY ON BCN AND BAN RULED SURFACES IN 𝔼3

  • Abd-Ellah, Hamdy N.;Omran, Abdelrahim Khalifa
    • Korean Journal of Mathematics
    • /
    • v.25 no.4
    • /
    • pp.513-535
    • /
    • 2017
  • As a continuation to the study in [8, 12, 15, 17], we construct bi-conservative central normal (BCN) and bi-conservative asymptomatic normal (BAN) ruled surfaces in Euclidean 3-space ${\mathbb{E}}^3$. For such surfaces, local study is given and some examples are constructed using computer aided geometric design (CAGD).

NEW VERSION OF THE MAGNETIC CURVES ACCORDING TO THE BISHOP FRAME IN 𝔼3

  • Sariaydin, Muhammed T.;Korpinar, Talat
    • Honam Mathematical Journal
    • /
    • v.41 no.1
    • /
    • pp.175-183
    • /
    • 2019
  • In this paper, it is investigated Lorentz force equations for $N_1$ and $N_2$-magnetic curves in 3-Dimensional Euclidean space. We give the Lorentz force in the Bishop frame in ${\mathbb{E}}^3$. Then, we obtain a new characterization for a magnetic field V. Also, we also give examples for each curve.

On Ruled Surfaces with a Sannia Frame in Euclidean 3-space

  • Senyurt, Suleyman;Eren, Kemal
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.509-531
    • /
    • 2022
  • In this paper we define a new family of ruled surfaces using an othonormal Sannia frame defined on a base consisting of the striction curve of the tangent, the principal normal, the binormal and the Darboux ruled surface. We examine characterizations of these surfaces by first and second fundamental forms, and mean and Gaussian curvatures. Based on these characterizations, we provide conditions under which these ruled surfaces are developable and minimal. Finally, we present some examples and pictures of each of the corresponding ruled surfaces.

2-type surfaces with 1-type gauss map

  • Jang, Kyung-Ok;Kim, Young-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.79-86
    • /
    • 1997
  • It is well-known that a null 2-type surface in 3-dimensional Euclidean space $E^#$ is an open portion of circular cylinder. In this article we prove that a surface with 2-type and 1-type Gauss map in $E^3$ is in fact of null 2-type and thus it is an open portion of circular cylinder.

  • PDF

ON THE GENERALIZED BOUNDARY AND THICKNESS

  • Kang, Buhyeon
    • Korean Journal of Mathematics
    • /
    • v.28 no.3
    • /
    • pp.573-585
    • /
    • 2020
  • We introduced the concepts of the generalized accumulation points and the generalized density of a subset of the Euclidean space in [1] and [2]. Using those concepts, we introduce the concepts of the generalized closure, the generalized interior, the generalized exterior and the generalized boundary of a subset and investigate some properties of these sets. The generalized boundary of a subset is closely related to the classical boundary. Finally, we also introduce and study a concept of the thickness of a subset.

SOME CLASSIFICATIONS OF RULED SUBMANIFOLDS

  • Kim, Dong-Soo;Kim, Young Ho;Jung, Sun Mi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.3
    • /
    • pp.823-829
    • /
    • 2014
  • Ruled submanifolds in Euclidean space satisfying some algebraic equations concerning the Laplace operator related to the isometric immersion and Gauss map are studied. Cylinders over a finite type curve or generalized helicoids are characterized with such algebraic equations.

CLASSIFICATIONS OF HELICOIDAL SURFACES WITH L1-POINTWISE 1-TYPE GAUSS MAP

  • Kim, Young Ho;Turgay, Nurettin Cenk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1345-1356
    • /
    • 2013
  • In this paper, we study rotational and helicoidal surfaces in Euclidean 3-space in terms of their Gauss map. We obtain a complete classification of these type of surfaces whose Gauss maps G satisfy $L_1G=f(G+C)$ for some constant vector $C{\in}\mathbb{E}^3$ and smooth function $f$, where $L_1$ denotes the Cheng-Yau operator.

RIBAUCOUR TRANSFORMATIONS OF THE SURFACES WITH CONSTANT POSITIVE GAUSSIAN CURVATURES IN THE 3-DIMENSIONAL EUCLIDEAN SPACE

  • PARK, Joon-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.165-175
    • /
    • 2006
  • We associate the surfaces of constant Gaussian curvature K = 1 with no umbilics to a subclass of the solutions of $O(4,\;1)/O(3){\times}O(1,\;1)-system$. From this correspondence, we can construct new K = 1 surfaces from a known K = 1 surface by using a kind of dressing actions on the solutions of this system.

On the Ruled Surfaces with L1-Pointwise 1-Type Gauss Map

  • Kim, Young Ho;Turgay, Nurettin Cenk
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.1
    • /
    • pp.133-144
    • /
    • 2017
  • In this paper, we study ruled surfaces in 3-dimensional Euclidean and Minkowski space in terms of their Gauss map. We obtain classification theorems for these type of surfaces whose Gauss map G satisfying ${\Box}G=f(G+C)$ for a constant vector $C{\in}{\mathbb{E}}^3$ and a smooth function f, where ${\Box}$ denotes the Cheng-Yau operator.