• Title/Summary/Keyword: Error of Convergence

Search Result 1,967, Processing Time 0.028 seconds

Performance Evaluation of Block Error of FS MC-CDMA System in Various Nakagami Fading Channels

  • Jin, Ze-Guang;Kang, Heau-Jo
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.131-135
    • /
    • 2006
  • In this paper, we discusses that the theoretical analysis is made for the performance of FS MC-CDMA by the aid of the Nakagami fading channels and the block error probabilities of the FS MC-CDMA in Nakagami fading channel are presented. The channel fading speed, slow or fast, is considered in evaluating block error probabilities. The effectiveness of diversity combining in improving block error performance is examined.

RLS Adaptive IIR Filters Based on Equation Error Methods Considering Additive Noises

  • Muneyasu, Mitsuji;Kamikawa, Hidefumi;Hinamoto, Takao
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.215-218
    • /
    • 2000
  • In this paper, a new algorithm for adaptive IIR filters based on equation error methods using the RLS algorithm is proposed. In the proposed algorithm, the concept of feedback of the scaled output error proposed by tin and Unbehauen is employed and the forgetting factor is varied in adaptation process for avoiding the accumulation of the estimation error for additive noise . The proposed algorithm has the good convergence property without the parameter estimation error under the existence of mea-surement noise.

  • PDF

Asymptotic Behaviro of Adaptive Systems: Convergence Analysis Without the Barbalat's Lemma

  • Hong, Keum-Shik;Hong, Yong-do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.277-282
    • /
    • 1994
  • Convergence of the state error e to zero in adaptive systems is shown using the uniqueness of solutions and the existence of a Lyapunov function in which the adaptation laws are constructed. Results in the paper are general, and therefore applicable to any adaptive control of a linear/nonlinear, time-varying or distributed-parameter system. Since the approach taken in the paper does not require the boundedness of the derivative of the state error e for all t .geq. 0, it is particularly useful in the adaptive control of infinite dimensional systems.

  • PDF

Feedback Error Quantification in Adaptive Modulation over Fading Channels

  • Choi, Se-Yeong
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.183-186
    • /
    • 2011
  • In this work, we consider imperfectness of feedback channels in the adaptive transmission scheme which was previously studied with an assumption of error-free feedback channels. New method of mapping the modulation index into the feedback channel symbols and quantifying feedback error over fading channels are proposed. The presented method and results are expected to offer valuable tools for the system designer to efficiently implement adaptive diversity schemes to compensate for the performance degradation due to feedback error.

Comparison of error estimation methods and adaptivity for plane stress/strain problems

  • Ozakca, Mustafa
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.579-608
    • /
    • 2003
  • This paper deals with adaptive finite element analysis of linearly elastic structures using different error estimators based on flux projection (or best guess stress values) and residual methods. Presentations are given on a typical h-type adaptive analysis, a mesh refinement scheme and the coupling of adaptive finite element analysis with automatic mesh generation. Details about different error estimators are provided and their performance, reliability and convergence are studied using six node quadratic triangular elements. Several examples are presented to demonstrate the reliability of different error estimators.

THE EFFECT OF QUADRATURE ERRORS IN PRACTICE

  • Kim, Chang-Geun
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.195-203
    • /
    • 1998
  • In [3], we showed that overintegration may be needed to obtain the optimal $H^1$ error rate for the $p$ version. In this paper, we examine the convergence of the $p$ version in practice, and comment on the implementation of the $p$ version in commercial codes. Also, we give an example of a problem with extremely rough coefficients, for which overintegration is necessary to obtain the optimal $H^1$ convergence rate.

  • PDF

Iterative learning control for a class of discrete-time nonlinear systems (이산시간 비선형 시스템에 대한 반복학습제어)

  • 안현식;최종호;김도현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.836-841
    • /
    • 1993
  • For a class of discrete-time nonlinear systems, an iterative learning control method is proposed and a sufficient condition is derived for the convergence of the output error. The proposed method is shown to be less sensitive to modelling errors and the uniform boundedness of the output error is guaranteed even in the presence of initial state errors. It is illustrated by simulations that the actual output converges to a desired output within the tolerance bound and convergence performance is improved by the presented method.

  • PDF

A SEXTIC-ORDER VARIANT OF DOUBLE-NEWTON METHODS WITH A SIMPLE BIVARIATE WEIGHTING FUNCTION

  • Kim, Young Ik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.513-521
    • /
    • 2014
  • Via extension of the classical double-Newton method, we propose high-order family of two-point methods in this paper. Theoretical and computational properties of the proposed methods are fully investigated along with a main theorem describing methodology and convergence analysis. Typical numerical examples are thoroughly treated to verify the underlying theory.

Robust Output Feedback Control Using a Servocompensator (서보보상기를 사용한 견실 출력귀환제어)

  • Lee, Ho-Jin;Lee, Keum-Won
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.217-221
    • /
    • 2007
  • This paper deals with the robust nonlinear controller design using output feedback for a Chua circuit which is one of the well-known nonlinear models. First, an exosystem for reference signal tracking is defined, and error dynamic equations are derived from the differentiation of the output tracking error equation. The normal sliding surface is modified using the integral type servo compensator. The parameters in the equations of the modified sliding surface and servo compensator are determined by using the Hurwitz condition of stability. Especially the error signals can't be obtained directly from the output because all parameters are assumed unknown. So instead, a high gain observer is designed. From this estimated error signals, a stabilizing controller is designed. Simulation is done for demonstrating the effectiveness of the suggested algorithm.

  • PDF