Browse > Article
http://dx.doi.org/10.12989/sem.2003.15.5.579

Comparison of error estimation methods and adaptivity for plane stress/strain problems  

Ozakca, Mustafa (Department of Civil Engineering, University of Gaziantep)
Publication Information
Structural Engineering and Mechanics / v.15, no.5, 2003 , pp. 579-608 More about this Journal
Abstract
This paper deals with adaptive finite element analysis of linearly elastic structures using different error estimators based on flux projection (or best guess stress values) and residual methods. Presentations are given on a typical h-type adaptive analysis, a mesh refinement scheme and the coupling of adaptive finite element analysis with automatic mesh generation. Details about different error estimators are provided and their performance, reliability and convergence are studied using six node quadratic triangular elements. Several examples are presented to demonstrate the reliability of different error estimators.
Keywords
finite element; error estimation; adaptivity; plane stress/strain;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Babuska, I., Strouboulis, T. and Upadhyay, C.S. (1994), "A model study of the quality of a posteriori error estimators for linear elliptic problems, Error estimation in the interior of patchwise uniform grids of triangles", Comput. Meth. Appl. Mech. Eng., 114, 307-378.   DOI   ScienceOn
2 Zienkiewicz, O.C. and Taylor, R.L. (2000), The Finite Element Method, 5th ed., Vols. 1-3, Butterworth Heinemann, London.
3 Mathisen, K.M and Okstad, K.M. (1999), "Error estimation and adaptivity in explicit nonlinear finite element simulation of quasi-static problems", Comput. Struct., 72 , 627-644.   DOI   ScienceOn
4 Hinton, E., Özakça, M. and Rao, N.V.R. (1991), "Adaptive analysis of thin shells using facet elements", Int. J. Num. Meth. Engng., 32, 1283-1301.   DOI
5 Cugnon, F. and Beckers, P. (1998), "Error estimation for h- and p-method", 8th Mechanical Engineering Chilean Congress 183-188, 27-30 October.
6 Babuska, I. and Rheinboldt, W.C. (1978), "A posteriori error estimates for the finite element method", Int. J. Num. Meth. Engng., 12, 1597-1615.   DOI
7 Zienkiewicz, O.C. and Zhu, J.Z. (1992), "The superconvergent patch recovery and a posteriori error estimates. Parts 1-2", Int. J. Num. Meth. Engng., 33, 1331-1382.   DOI
8 Babuska, I. and Yu, D. (1986), "Asymptotically exact a posteriori error estimator for biquadratic elements", Technical Note BN-1050, Institute for Physical Science and Technology, University of Maryland.
9 Onate, E., Castro, J. and Kreiner, R. (1992), "Error estimation and mesh adaptivity techniques for plate and shell problems", Proc. of the Third Int. Conf. on Quality Assurance and Standards in Finite Element Analysis, 1-17.
10 Stephen, D.B and Steven, G.P. (1997), "Natural frequency error estimation using a path recovery technique", J. Sound Vib., 200, 151-165.   DOI   ScienceOn
11 Hinton, E., Ozakca, M. and Rao, N.V.R. (1991), "An integrated approach to structural shape optimisation of linearly elastic structures Part 2: shape definition and adaptivity", Computing Systems in Engineering, 2, 27-56.   DOI   ScienceOn
12 Hinton, E., Rock, T. and Zienkiewicz, O.C. (1976), "A note on mass lumping and related processes in the finite element method", Int. J. Earth. Engng. Struct. Dyn., 4, 245-249.   DOI   ScienceOn
13 Ozakca, M. (1993), "Analysis and optimal design of structures with adaptivity", Ph.D thesis, C/Ph/168/93, Dept. of Civil Engineering, University College of Swansea, Swansea, UK.
14 Baehmann, P.L., Shephard, M.S. and Flaherty, E.J. (1990), "A posteriori error estimation for triangular and tetrahedral quadratic elements using interior residuals", SCOREC Report, Scientific Computation Research Center, Rensselaer Polytechnic Institute.
15 Barlow, J. (1976), "Optimal stress locations in the finite element method", Int. J. Num. Meth. Engng., 10, 243-251.   DOI   ScienceOn
16 Zienkiewicz, O.C., Liu, Y.C. and Huang, G.C. (1988), "An error estimate and adaptive refinement method for extrusion and other forming problems", Int. J. Num. Meth. Engng., 25, 23-42.   DOI
17 Hinton, E. and Campbell, J.S. (1974), "Local and global smoothing of discontinuous finite element functions using a least squares method", Int. J. Num. Meth. Engng., 8, 461-480.   DOI   ScienceOn
18 Dutta, A. and Ramakrishnan, C.V. (1997), "Error estimation in finite element transient dynamic analysis using modal superposition", Engineering Computation, 14, 135-158.   DOI   ScienceOn
19 Cho, J.R and Oden, J.P. (1996), "A priori error estimations of hp - finite element approximations for hierarchical models of plate and shell like structures", Comp. Meth. Appl. Mech. Eng., 132, 135-177.   DOI   ScienceOn
20 Babuska, I., Strouboulis, T., Upadhyay, C.S., Gangaraj, S.K. and Copps, K. (1994), "Validation of a posteriori error estimators by numerical approach", Int. J. Num. Meth. Engng., 37, 1073-1123.   DOI   ScienceOn
21 Cook, R.D., Malkus, S.D. and Plesha, M.E. (1989), Concepts and Applications of Finite Element Analysis, 3th ed. John Wiley, New York.
22 Sienz, J. (1994), "Integrated structural modelling, adaptive analysis and shape optimization", Ph.D. thesis, C/M/ 259/90, Dept. of Civil Eng. University College of Swansea.
23 Kelly, D.W., Gago, J.P. de S.R. and Zienkiewicz, O.C. (1983), "A posteriori error analysis and adaptive processes in the finite element method, Part I: error analysis", Int. J. Num. Meth. Engng., 19, 1593-1619.   DOI   ScienceOn
24 Robinson, D.J. and Armstrong, C.G. (1992), "An experimental comparison of energy error estimators for 8-noded isoparametric quadrilateral elements", Proc. of the Third Int. Conf. on Quality Assurance and Standards in Finite Element Analysis, NAFEM, 202-212.
25 Shephard, M.S., Niu, Q.X. and Baehmann, P.L. (1989), "Some results using stress projectors for error indication and estimation", SCOREC Report, Scientific Computation Research Center, Rensselaer Polytechnic Institute.
26 Strouboulis, T. and Haque, K.A. (1992), "Recent experiences with error estimation and adaptivity, Part 2: error estimation for h - adaptive approximations on grids of triangles and quadrilaterals", Comp. Meth. Appl. Mech. Engng., 100, 359-430.   DOI   ScienceOn
27 Moan, T. (1974), "Optimal polynomials and 'best' numerical integration formulas on a triangle", ZAMM, 54, 501-508.   DOI   ScienceOn
28 Cantin, G., Loubignac, G. and Touzot, G. (1978), "An iterative algorithm to build continuous stress and displacement solutions", Int. J. Num. Meth. Engng., 12, 1493-1506.   DOI   ScienceOn
29 Peraire, J., Vahdati, M., Morgan, K. and Zienkiewicz, O.C. (1987), "Adaptive remeshing for compressible flow computations", J. Comp. Phys., 72, 449-466.   DOI   ScienceOn