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Abstract

In this paper, a new algorithm for adaptive IIR fil-
ters based on equation error methods using the RLS
algorithm is proposed. In the proposed algorithm,
the concept of feedback of the scaled output error
proposed by Lin and Unbehauen is employed and
the forgetting factor is varied in adaptation process
for avoiding the accumulation of the estimation er-
ror for additive noise. The proposed algorithm has
the good convergence property without the param-
eter estimation error under the existence of mea-
surement noise.

1 Introduction

Adaptive filters have played a key part in various
fields [1], [2]. They are classified into finite impulse
response (FIR) and infinite impulse response (IIR)
filters from the point of view of the filter model. The
adaptive FIR filter has been used widely, because
of the feature like stability. However the adaptive
IIR filter can achieve a lower order than that of the
FIR filter having the same performance.

From the treatment of an error signal, algorithms
of the adaptive IIR filters are classified into an out-
put error algorithm and an equation error algorith-
m [3], [4]. The output error algorithm directly uses
the output signal of the filter in the update formula
of coefficients. This algorithm should select a small
step-size parameter and the associated performance
surface may have many local minima. The equation
error algorithm uses the desired output instead of
the filter output. Its associated performance sur-
face is unimodal and has a good convergence prop-
erty. However, if a reference signal is corrupted by
an additive noise (a measurement noise), the esti-
mation of coefficients by the equation error method
has some bias. For the problem like system identi-
fication, it becomes a serious defect. To solve this
difficulty, several techniques have been proposed [5],
[6]. The bias-remedy least mean square error (BR-
LE) algorithm proposed by Lin and Unbehauen is
one of such bias removal algorithms [7]. This al-
gorithm is based on canceling the additive noise in

the reference signal by the scaled output error as
the estimation of the additive noise.

In Ref.[7], the LMS algorithm is employed as the
adaptive algorithm. However the main concept of
the BRLE algorithm can be applied to the RLS al-
gorithm. By using the RLS algorithm, we may ex-
pect a fast convergence property and a robustness
for rion-stationary inputs [1]. This paper proposes
an algorithm of the RLS adaptive IIR filters based
on the BRLE algorithm. In this algorithm, the con-
stant forgetting factor has some problem and its
modification is also proposed. By the proposed al-
gorithm, no bias and fast convergence properties are
obtained irrespective of the white or colored input-
S.

2 Adaptive IIR Filter

An adaptive IIR filter can be expressed by

N-1

aj(n)y(n —§) + Y bi(n)u(n—d) (1)

i=0

M-1
y(n) =
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where u(n) is the input signal and y(n) the output
signal.

The update algorithm of filter coefficients for adap-
tive IIR filters is mainly classified into the output
error algorithm and the equation error algorithm.
Especially, the equation error algorithm has several
merits, that is, the associated performance surface
is unimodal and an appropriate magnitude of the
step-size parameter can be specified. The block di-
agram of the equation error method is shown in Fig.
1.

The transfer function of the block A(z) which is
the inverse filer of the IIR part 1/A(z), is given as

M-1

Alz)=1- E aj(n)z"j

=

2)
and the transfer function B(z) is also defined by

N-1 i
B(z) = Z bi(n)z~¢ . (3)
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Figure 1: The block diagram of the equation error
method.

The reference signal d(n) is used for the input of
the block A(z). Then, the coefficients of the blocks
B(z) and A(z) are updated to minimize the error
e.(n) between de(n) and y.(n). The updated co-
efficients of A(z) is copied to the block 1/A(z) for
updating the IIR block [1].

The error e.(n) (called as ”equation error”) is
obtained as

A(2)d(n) — B(z)u(n)
M-1

= d(n) - ) aj(n)d(n - j)

€e (n) =

o,
—

- Z bi(n)u(n — 1)

= do(n) —pe(n) . (4)

For example, the update formulas by the LMS al-
gorithm are as follows:

a;j(n+1) = a;(n) + 2paec(n)d(n - j)
bi(n + 1) = bi(n) + 2ppec(n)u(n — i)

(3)
(6)

The equation error method has several merits de-
scribed in the above. However, the biased estima-
tion of the coefficients of the block A(z) is occurred,
if the reference signal is corrupted by the additive
noise.

3 Bias Removal Algorithm

To solve the bias problem of the equation error
method, one of the bias removal algorithm is pro-
posed by Lin and Unbehauen [7]. This algorithm
uses the following scaled output error vector as an
estimation of the additive noise:

e(n) = [eg(n—1),e0(n—2),--,e0(n — M+ 1)]T(7)
eo(n) = d(n) — y(n) (8)

This estimation is used for the cancellation of the
additive noise.
From this concept, Eq. (5) can be rewritten as
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Figure 2: The block diagram of the bias removal
algorithm.

a(n+ 1) = a(n) + 2puaec(n)[ua(n) — 7(n)e(n)] (9)
where

ug(n) =[d(n—1),d(n—2),---,d(n— M +1)]7(10)

a(n) = [a1(n), az(n), -, apr—1(n)]" (11)
and 7(n) is the following scaling factor:
: llua(n)ﬂ)
T(n) = min (1 y a>0 12
EO 4
where || || means Euclidean norm.

The value of the scaling factor 7(n) is inverse-
ly proportional to the variance of the error e,(n).
Therefore, in the early stage, the additive noise
cannot be reduced because of the large variance of
eg(n). As the variance of ep(n) decreases, the esti-
mation of the additive noise in d(n) becomes accu-
rate and the value of 7(n) increases until 1.

The block diagram of this bias removal algorithm
is shown in Fig. 2. '

4 Equation Error Adaptive I-
IR RLS Filter Considering
Additive Noise

4.1 RLS algorithm considering bias

removal

The RLS algorithm considering the bias removal
algorithm described in the previous section is sum-
marized as follows. The RLS algorithm for B(z) is
omitted, because it is same to the ordinary one.

[RLS algorithm for block A(z) considering
bias removal]

Initial conditions P,(0) =¢;1I , a(0)=0
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Step.1 Let n be 1.
Step.2 Calculation of 7(n):

7(n) = min (1, “W)

Step.3 Removal of additive noises:
#4(n) = uq(n) — 7(n)e(n)
Step.4 Calculation of gain vectors:

_ Pa(n —_ l)ﬁa(n)
b S T () Pa(n - Daa()

Step.5 Calculation of a priori estimate errors:
Na(n) = ye(n) — d(n) + aT (n — ua(n)

Step.6 Renovation of the estimate value of the
coefficient vectors:

a(n) = a(n — 1) + ka(n)na(n)
Step.7 Renovation of the correlation matrix:
Pofn) = 1 {Paln-1)
—kq(n)a? (n) Pa(n — 1)}

Step.8 Let n be n+ 1 and go to Step. 2.

4.2 Problem of the RLS algorithm
considering bias removal

Compared to the LMS algorithm, the RLS algo-
rithm requires more amount of computation, but it
gives more fast convergence property, because the
RLS algorithm can use all the past input informa-
tion to calculate the tap correction term. Therefore
it is considered that the RLS algorithm accumulates
all the past input in its parameters.

This fact causes a problem for the bias removal
RLS algorithm in the previous section. In early
stage of this algorithm, the estimation of the addi-
tive noise is inaccurate, this error of the estimation
remains in all adaptive process from the nature of
the RLS algorithm. As a result, the estimation of
tap coefficients also becomes incorrect.

To solve this problem, the use of a variable for-
getting factor A(n) is considered. The value of A(n)
sets small one in early stage of adaptation and it
gradually increases for progress of adaptation, be-
cause the estimation error of the additive noise is
large in early stage and it gradually becomes small.

The schedule of increasing A(n) is empirically de-
cided. For example, the case which used for the
simulation in the latter section is shown in Fig. 3.
In this case, the initial value of A(n) is 0.2 and it
adds 0.1 at each 100 iteration until it becomes 1.
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Figure 3: An example of the scheduling of A,(n)

5 Simulation

To verify the effectiveness of the proposed method,
it is applied to system identification. The follow-
ing system is used for an unknown system to be
identified:

H(2)
142027 +3.0:"24+4.02"34+7.0274
1-0.32-1—-0.482-2 4+ 0.0842z-3 4+ 0.072—4
(13)

The following mean squared parameter error (MPSE)
is also used for the performance measure:

N mspe(t)
MSPE(i) = 10log mspe(0) (14)
200xi+4199 . 9
. . a —
maspe(i) = Zg_zoox; 2051) Qruel| (15)
where a;ry . is the coefficients vector of the unknown
system.

The white Gaussian noise whose mean is 0 and
variance 1, is selected as the input signal u(n) and
the additive noise v(n). The step-size parameters in
the LMS algorithm are chosen as pg, = 0.0001 and
pp = 0.0002 and this selection gives the best conver-
gence property. The parameters in the RLS algo-
rithm are chosen as ¢, = e, ¢, = 1.0, A\ = 1.0 and
Aq specified in Fig.3. For each algorithm, o = 1.0
and the initial values of coefficients are 0. The mean
and variance of the reference signal corrupted by
the additive noise are —0.003035 and 266.485976.
The convergence properties of A(z) and B(z) are
shown in Figs. 4 and 5, respectively and each esti-
mation value of coefficients after 30000 iteration is
also shown in Tables 1 and 2, respectively.

From the above results, it is found that the pro-
posed method gives a good convergence property.
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Figure 4: Convergence property of A(z)
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Figure 5: Convergence property of B(z)

6 Conclusion

In this paper, we have proposed an equation er-
ror adaptive IIR filter based on RLS algorithm con-
sidering the bias removal. Then, the problem of
this algorithm has also been pointed out and an
improvement method has been shown. The simu-
lation result has indicated the effectiveness of the
proposed algorithm.

The theoretical analysis of the proposed method,
the reduction of the amount of computation and the
scheduling algorithm of A, are left for the future
works.
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