• Title/Summary/Keyword: Equations

Search Result 17,460, Processing Time 0.039 seconds

A narrative review on the application of doubly labeled water method for estimating energy requirement for Koreans

  • Kim, Oh Yoen;Park, Jonghoon;Kim, Eun-Kyung
    • Nutrition Research and Practice
    • /
    • v.16 no.sup1
    • /
    • pp.11-20
    • /
    • 2022
  • Research articles were reviewed to validate the estimated energy requirements (EERs) equations developed by the Institute of Medicine of the National Academies (IOM). These equations are based on total energy expenditure (TEE) measured by the doubly labeled water (DLW) method. We subsequently aimed to provide the basis for the suitability to apply the IOM equations as EER equations for Koreans, and develop relevant equations for EER in the Dietary Reference Intake for Koreans (KDRI). Additionally, besides the EER(IOM) equations, other equations were examined for EER estimation. Research papers demonstrating the validation of the EER(IOM) equations based on TEE(DLW) were searched through PubMed (up to September 2019). Of the 637 potentially relevant articles identified, duplicates and unsuitable titles and abstracts were excluded. Furthermore, papers with irrelevant subject and inappropriate study design were also excluded. Finally, 11 papers were included in the review. Among the reviewed papers, 8 papers validated the application of the EER(IOM) equations for EER based on TEE(DLW). These included 3 studies for children (USA 1, Korea 2), 1 for adolescents (Portugal), 2 for adults (Korean), and 2 for the elderly (Korea, USA). EER(IOM) equations were found to be generally acceptable for determining EER by using the DLW method, except for Korean boys at 9-11 yrs (overestimated) and female athletes at 19-24 yrs (underestimated). Additionally, 5 papers include the validation of other EER equations, beside EER(IOM) for EER based on TEE(DLW). In Japanese dietary reference intake and recommended dietary allowance, EER equations are acceptable for determining EER based on TEE(DLW). The EER(IOM) equations is generally acceptable for determining EER using the DLW method in Koreans as well as several populations, although certain defined groups were found to be unfit for the estimation. Additionally, the concept of healthy body mass index of Koreans and physical activity levels need to be considered, thereby providing the basis for developing relevant equations of EER in KDRI.

Using SAS/STAT to Solve a System of Nonlinear Equations (SAS/STAT를 이용하여 비선형 방정식계의 해를 구하는 방법)

  • 남윤석;조태경;심규박
    • Journal of Korean Society for Quality Management
    • /
    • v.28 no.1
    • /
    • pp.95-104
    • /
    • 2000
  • There exist many computer algorithms to solve a system of nonlinear equations. But in case nonlinear equations are complex it is not easy to solve a system of nonlinear equations. In this paper we consider the method of using NLIN procedure in SAS/STAT to solve a system of nonlinear equations.

  • PDF

On the Dynamics of Multi-Dimensional Lotka-Volterra Equations

  • Abe, Jun;Matsuoka, Taiju;Kunimatsu, Noboru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1623-1628
    • /
    • 2004
  • In the 3-dimensional cyclic Lotka-Volterra equations, we show the solution on the invariant hyperplane. In addition, we show the existence of the invariant hyperplane by the center manifold theorem under the some conditions. With this result, we can lead the hyperplane of the n-dimensional cyclic Lotka-Volterra equaions. In other section, we study the 3- or 4-dimensional Hamiltonian Lotka-Volterra equations which satisfy the Jacobi identity. We analyze the solution of the Hamiltonian Lotka- Volterra equations with the functions called the split Liapunov functions by [4], [5] since they provide the Liapunov functions for each region separated by the invariant hyperplane. In the cyclic Lotka-Volterra equations, the role of the Liapunov functions is the same in the odd and even dimension. However, in the Hamiltonian Lotka-Volterra equations, we can show the difference of the role of the Liapunov function between the odd and the even dimension by the numerical calculation. In this paper, we regard the invariant hyperplane as the important item to analyze the motion of Lotka-Volterra equations and occur the chaotic orbit. Furtheremore, an example of the asymptoticaly stable and stable solution of the 3-dimensional cyclic Lotka-Volterra equations, 3- and 4-dimensional Hamiltonian equations are shown.

  • PDF

A Linearization Method for Constrained Mechanical System (구속된 다물체시스템의 선형화에 관한 연구)

  • Bae, Dae-Sung;Yang, Seong-Ho;Seo, Jun-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1303-1308
    • /
    • 2003
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre-multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of ail relative coordinates, velocities, and accelerations. Since the coordinates, velocities, and accelerations are tightly coupled by the position, velocity, and acceleration level constraints, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all coordinates, velocities, and accelerations, which are coupled by the constraints. The position, velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The perturbed constraint equations are then simultaneously solved for variations of all coordinates, velocities, and accelerations only in terms of the variations of the independent coordinates, velocities, and accelerations. Finally, the relationships between the variations of all coordinates, velocities, accelerations and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent coordinate, velocity, and acceleration variations.

A Linearization Method for Constrained Mechanical Systems (구속된 다물체 시스템의 선형화에 관한 연구)

  • Bae, Dae-Sung;Choi, Jin-Hwan;Kim, Sun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.893-898
    • /
    • 2004
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of all relative coordinates, velocities, and accelerations. Since the coordinates, velocities, and accelerations are tightly coupled by the position, velocity, and acceleration level constraints, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all coordinates, velocities, and accelerations, which are coupled by the constraints. The position, velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The perturbed constraint equations are then simultaneously solved for variations of all coordinates, velocities, and accelerations only in terms of the variations of the independent coordinates, velocities, and accelerations. Finally, the relationships between the variations of all coordinates, velocities, accelerations and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent coordinate, velocity, and acceleration variations.

  • PDF

INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN HETEROGENEOUS MEDIA

  • Pak, Hee Chul
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.335-347
    • /
    • 2006
  • The homogenization of non-stationary Navier-Stokes equations on anisotropic heterogeneous media is investigated. The effective coefficients of the homogenized equations are found. It is pointed out that the resulting homogenized limit systems are of the same form of non-stationary Navier-Stokes equations with suitable coefficients. Also, steady Stokes equations as cell problems are identified. A compactness theorem is proved in order to deal with time dependent homogenization problems.

  • PDF

THE SOBOLEV REGULARITY OF SOLUTIONS OF FIRST ORDER NONLINEAR EQUATIONS

  • Kang, Seongjoo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.17-27
    • /
    • 2014
  • In order to study the propagation of singularities for solutions to second order quasilinear strictly hyperbolic equations with boundary, we have to consider the regularity of solutions of first order nonlinear equations satisfied by a characteristic hyper-surface. In this paper, we study the regularity compositions of the form v(${\varphi}$(x), x) with v and ${\varphi}$ assumed to have limited Sobolev regularities and we use it to prove the regularity of solutions of the first order nonlinear equations.

A method of formulating the equations of motion of multibody systems (다몸체 시스템의 운동방정식 형성방법)

  • 노태수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.926-930
    • /
    • 1993
  • An efficient method of formulating the equations of motion of multibody systems is presented. The equations of motion for each body are formulated by using Newton-Eulerian approach in their generic form. And then a transformation matrix which relates the global coordinates and relative coordinates is introduced to rewrite the equations of motion in terms of relative coordinates. When appropriate set of kinematic constraints equations in terms of relative coordinates is provided, the resulting differential and algebraic equations are obtained in a suitable form for computer implementation. The system geometry or topology is effectively described by using the path matrix and reference body operator.

  • PDF