• Title/Summary/Keyword: Empirical likelihood

Search Result 193, Processing Time 0.03 seconds

Envelope empirical likelihood ratio for the difference of two location parameters with constraints of symmetry

  • Kim, Kyoung-Mi;Zhou, Mai
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.51-73
    • /
    • 2002
  • Empirical likelihood ratio method is a new technique in nonparametric inference developed by A. Owen (1988, 2001). Sometimes empirical likelihood has difficulties to define itself. As such a case in point, we discuss the way to define a modified empirical likelihood for the location of symmetry using well-known points of symmetry as a side conditions. The side condition of symmetry is defined through a finite subset of the infinite set of constraints. The modified empirical likelihood under symmetry studied in this paper is to construct a constrained parameter space $\theta+$ of distributions imposing known symmetry as side information. We show that the usual asymptotic theory (Wilks theorem) still hold for the empirical likelihood ratio on the constrained parameter space and the asymptotic distribution of the empirical NPMLE of difference of two symmetric points is obtained.

  • PDF

On Bootstrapping; Bartlett Adjusted Empirical Likelihood Ratio Statistic in Regression Analysis

  • Woochul Kim;Duk-Hyun Ko;Keewon Lee
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.2
    • /
    • pp.205-216
    • /
    • 1996
  • The bootstrap calibration method for empirical likelihood is considered to make a confidence region for the regression coefficients. Asymptotic properties are studied regarding the coverage probability. Small sample simulation results reveal that the bootstrap calibration works quite well.

  • PDF

Size Refinement of Empirical Likelihood Tests in Time Series Models using Sieve Bootstraps

  • Lee, Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.3
    • /
    • pp.199-205
    • /
    • 2013
  • We employ sieve bootstraps for empirical likelihood tests in time series models because their null distributions are often vulnerable to the presence of serial dependence. We found a significant size refinement of the bootstrapped versions of a Lagrangian Multiplier type test statistic regardless of the bandwidth choice required by long-run variance estimations.

ELCIC: An R package for model selection using the empirical-likelihood based information criterion

  • Chixiang Chen;Biyi Shen;Ming Wang
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.4
    • /
    • pp.355-368
    • /
    • 2023
  • This article introduces the R package ELCIC (https://cran.r-project.org/web/packages/ELCIC/index.html), which provides an empirical likelihood-based information criterion (ELCIC) for model selection that includes, but is not limited to, variable selection. The empirical likelihood is a semi-parametric approach to draw statistical inference that does not require distribution assumptions for data generation. Therefore, ELCIC is more robust and versatile in the context of model selection compared to the currently existing information criteria. This paper illustrates several applications of ELCIC, including its use in generalized linear models, generalized estimating equations (GEE) for longitudinal data, and weighted GEE (WGEE) for missing longitudinal data under the mechanisms of missing at random and dropout.

Analysis of the Frailty Model with Many Ties (동측치가 많은 FRAILTY 모형의 분석)

  • Kim Yongdai;Park Jin-Kyung
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.1
    • /
    • pp.67-81
    • /
    • 2005
  • Most of the previously proposed methods for the frailty model do not work well when there are many tied observations. This is partly because the empirical likelihood used is not suitable for tied observations. In this paper, we propose a new method for the frailty model with many ties. The proposed method obtains the posterior distribution of the parameters using the binomial form empirical likelihood and Bayesian bootstrap. The proposed method yields stable results and is computationally fast. To compare the proposed method with the maximum marginal likelihood approach, we do simulations.

Non-Conservatism of Bonferroni-Adjusted Test

  • Jeon, Cyeong-Bae;Lee, Sung-Duck
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.219-227
    • /
    • 2001
  • Another approach (multi-parameter measurement method) of interlaboratory studies of test methods is presented. When the unrestricted normal likelihood for the fixed latent variable model is unbounded, we propose a me쇙 of restricting the parameter space by formulating realistic alternative hypothesis under which the likelihood is bounded. A simulation study verified the claim of conservatism of level of significance based on assumptions about central chi-square distributed test statistics and on Bonferroni approximations. We showed a randomization approach that furnished empirical significance levels would be better than a Bonferroni adjustment.

  • PDF

Empirical Bayes Estimate for Mixed Model with Time Effect

  • Kim, Yong-Chul
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.515-520
    • /
    • 2002
  • In general, we use the hierarchical Poisson-gamma model for the Poisson data in generalized linear model. Time effect will be emphasized for the analysis of the observed data to be collected annually for the time period. An extended model with time effect for estimating the effect is proposed. In particularly, we discuss the Quasi likelihood function which is used to numerical approximation for the likelihood function of the parameter.

Bayesian Confidence Intervals in Penalized Likelihood Regression

  • Kim Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.1
    • /
    • pp.141-150
    • /
    • 2006
  • Penalized likelihood regression for exponential families have been considered by Kim (2005) through smoothing parameter selection and asymptotically efficient low dimensional approximations. We derive approximate Bayesian confidence intervals based on Bayes model associated with lower dimensional approximations to provide interval estimates in penalized likelihood regression and conduct empirical studies to access their properties.

Optimal Design for Locally Weighted Quasi-Likelihood Response Curve Estimator

  • Park, Dongryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.743-752
    • /
    • 2002
  • The estimation of the response curve is the important problem in the quantal bioassay. When we estimate the response curve, we determine the design points in advance of the experiment. Then naturally we have a question of which design would be optimal. As a response curve estimator, locally weighted quasi-likelihood estimator has several more appealing features than the traditional nonparametric estimators. The optimal design density for the locally weighted quasi-likelihood estimator is derived and its ability both in theoretical and in empirical point of view are investigated.