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Abstract
We employ sieve bootstraps for empirical likelihood tests in time series models because their null distribu-

tions are often vulnerable to the presence of serial dependence. We found a significant size refinement of the
bootstrapped versions of a Lagrangian Multiplier type test statistic regardless of the bandwidth choice required
by long-run variance estimations.
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1. Introduction

Empirical likelihood(EL) methods (known as nonparametric likelihoods) are commonly used for ro-
bust hypothesis testing under weak identification. In time series models with dependent processes,
valid testing procedures have been developed that include a generalized method of mo-ments(GMM)-
based test statistic by Kleibergen (2005), Lagrangian Multiplier(LM) tests by Guggenberger and
Smith(GS) (2008) and by Otsu (2006). Tests based on quadratic forms of first-order conditions in
EL estimation can achieve pivotal properties because the asymptotic null distributions do not depend
on the strength of identifications. They have standard Chi-squared limit distributions with degrees of
freedom equal to the number of parameters instead of the number of moments; subsequently, the EL
tests prove practically useful in many aspects.

EL tests typically generate size distortions when underlying processes carry serial dependence.
Instrumental variables or innovation processes tend to be often serially correlated in time series models
that consist of (for example) macroeconomic series. Subsequently, empirical null distributions of EL
tests become sensitive to the choice of bandwidth, which is required for the estimation of long-run
variance. Empirical null rejection probabilities of the tests significantly depart from the nominal
level, which negatively affects accurate statistical inferences. This issue of size distortion is closely
related with the well-known size problem of heteroskedasticity and autocorrelation consistent(HAC)
covariance matrix estimation in time series literature (cf: Andrews, 1991; Newey and West, 1994).
Therefore, we try to find a way to improve size performance of the EL tests.

In this work, we make use of the sieve bootstraps by Bühlman (1997) as an appropriate bootstrap
method. In particular, the sieve method is a natural way to handle serial dependence in a time series.
It approximates a dependent time series process through autoregressive models under the null hypoth-
esis and generates bootstrapped data based on re-sampled residuals and fitted autoregressive models.
It is expected that the bootstrapped EL tests can achieve a more accurate size performance than the
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test statistics based on asymptotic inferences under the null hypothesis. We investigate how the sieve
bootstraps work when combined to EL tests through Monte Carlo simulations. As seen in the simula-
tion studies, bootstrap version of the EL test is shown to be less sensitive to the bandwidth choice than
original EL tests. We also note that recently, sieve methods have been widely applied to reduce size
distortions of test statistics in a time series context. Among others, we note Chang and Park (2004),
Park (2002) and Palm et al. (2010) in the context of testing for unit roots and cointegration.

In Section 2, we summarize the setup of EL tests. In Section 3, sieve bootstrap algorithms are
given. Simulation results are provided in the Section 4. Section 5 concludes.

2. Model

Consider Rm-valued stationary mixing process {zt}Tt=1. Let θ0 be the true parameter for θ ∈ Θ ⊂ Rp,
where p is the number of parameters, and g : Rm×Θ→ Rq be a vector of unknown function. Moment
conditions are typically written as

E
[
gt(zt, θ0)

]
= E

[
gt(θ0)

]
= 0. (2.1)

Therefore, the following hypothesis is of interest,

H0 : θ0 = θ
∗. (2.2)

In order to allow weak identifications, we decompose the parameter space as Θ = A × B, where
p = pA + pB. Put θ = (α′, β′)′. As in Stock and Wright (2000), certain conditions are imposed such
that α is weakly identified, while β is strongly identified (cf: GS, 2008).

Assumption 1. (1) E[T−1 ∑T
t=1 gt(θ)] = T−1/2m1T (θ) + m2(β), where m1 : Θ → Rq, such that

m1T (θ) → m1(θ) uniformly on Θ, and m1(θ0) = 0, (2) m2(β) : B → Rq such that m2(β) = 0, if
and only if β = β0, (3) m2(β) is continuously differentiable at β0 such that ∂m2(β)/∂β′|β=β0 has full
column rank which is equal to pβ.

The sample average of moment indicators are defined by

ĝ(θ) = T−1
T∑

t=1

gt(θ). (2.3)

In time series context, it is natural to use smoothed moment restrictions using a kernel weighting (e.g.,
Kitamura and Stutzer, 1997),

gtT (θ) = M−1
t−1∑

j=t−T

k
( j

M

)
gt− j(θ), (2.4)

where M is the bandwidth, and k(·) is a kernel function. For instance, testing procedures by GS (2008)
employ truncated kernel for k(·). Following conditions on a kernel function are standard.

Assumption 2. (1) k(x) : R → [−1, 1] is symmetric and continuous at zero with k(0) = 1, |k(x)| ≤
C|x|−b as x→ ∞ for b > 2, (2) K(λ) ≥ 0, for all λ ∈ [−π, π], where K(λ) = (2π)−1

∫ ∞
−∞ k(x)e−iλxdx.

Popular kernels such as Bartlett, Daniell, Parzen, quadratic spectral(QS) satisfy the conditions (1)
and (2). The function K(λ) is a Fourier transforms of k(x). Besides, we impose a mild condition on
bandwidths.
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Assumption 3. (1) M → ∞ as T → ∞, (2) M/T → 0 as T → ∞.

The long-run variance of moment indicators gt is defined as

Ω(θ) = lim
T→∞

Var

T− 1
2

T∑
t=1

gt(θ)

 . (2.5)

As counterparts of (2.4) and (2.5), sample average and the sample long-run variances are given by

ĝT (θ) = T−1
T∑

t=1

gtT (θ), Ω̂(θ) = M
T∑

t=1

(
gtT (θ)gtT (θ)′

T

)
. (2.6)

The EL estimator can be obtained as the solution of the following problem (Newey and Smith,
2004),

θ̂ = arg min
θ∈Θ

sup
λ∈Λ(θ)

L(θ, λ), where L(θ, λ) = 2
T∑

t=1

ρ (λ′gtT (θ))
T

, (2.7)

where Λ(θ) = {λ ∈ Rq; λ′gtT (θ) ∈ R} and ρ(x) = ln(1 − x). If we define ρ j(x) as the jth derivative of ρ,
then EL corresponds to ρ1(0) = ρ2(0) = −1.

Robust test statistics have been developed in the presence of weak identification as in Assumption
1, which make use of quadratic forms of the first-order conditions. Below, we focus on two testing
methods by GS (2008) and Kleibergen (2005). Let

D(θ) =
T∑

t=1

ρ1 (λ′dgtT (θ))
T

∈ Rq×p, for dgtT (θ) =
∂gtT (θ)
∂θ

∈ Rq×p. (2.8)

Further, define

G(θ) = T
1
2 ĝT (θ)′Ω̂(θ)−1D(θ), (2.9)

V(θ) = D(θ)′Ω̂(θ)−1D(θ).

Then, the LM test is given by (GS, 2008; Otsu, 2006)

LM =
G(θ)V(θ)−1G(θ)′

2
. (2.10)

Suppose assumptions 1–3 hold. Then, under the null hypothesis, the test converges to the Chi-
squared distribution with the degree of freedom equal to the number of parameters p,

LM
d→ χ2

p. (2.11)

The K-test by Kleibergen (2005) is summarized as follows. Define unsmoothed version of moment
indicators,

g̃T (θ) = T−1
T∑

t=1

gt(θ), sT (θ) = T
1
2

T∑
t=1

(g̃T (θ) − Eg̃T (θ)) , (2.12)
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and the long-run variance can be written as

Σ(θ) = lim
T→∞

EsT (θ)sT (θ)′. (2.13)

As is widely known, the long-run variance is estimable by conventional HAC estimator, denoted as
Σ̃(θ). One popular choice is Bartlett kernel-based Newey and West estimator. Further define

H(θ) = T
1
2 g̃T (θ)′Σ̃(θ)−1D(θ), (2.14)

W(θ) = D(θ)′Σ̃(θ)−1D(θ).

The K-test is given as

K = 2H(θ)W(θ)−1H(θ)′. (2.15)

As in the LM test above, the K-test also achieves limiting Chi-squared distribution with the p
degrees of freedom,

K
d→ χ2

p, (2.16)

then LM and K are asymptotically equivalent. It is known that both LM and K-tests have advantages
in terms of power as the degree of freedom is equal to p, which is often less than the number of
moments q (Kitamura, 1997). However, empirical null distributions of the tests may be vulnerable in
the presence of serial dependence. Some simulation results that include GS (2008) and Otsu (2006)
show unstable size properties of the tests. In the next section, we employ sieve bootstraps to improve
the size performances.

3. Sieve Bootstrap Tests

We make use of sieve bootstrap methods developed by Bühlman (1997). We suitably employ the
method in this EL context. The algorithms are stated as a sequence.

(a) Consider autoregressive(AR) model for {gt} process,

gt(θ) =
p∑

j=1

α jgt− j(θ) + et, (3.1)

where the lag p is set to increase with the sample size. Practical choice for p includes AIC or
BIC. As is clear, dependent moment indicators are approximated by an AR(∞) model.

(b) Run a regression and obtain the residuals {êt}. For example, if we consider a linear model yt =

βYt + et, and Yt = ϕzt + vt, then gt = ztet, where the zt is an instrumental variable. Then, ĝt = ztêt,
and êt = yt under the null hypothesis of β = 0.

(c) Recenter the residuals as êc,t = êt − (T − k)−1 ∑T
t=1 êt, and resample these residuals. Denote them

as {ê∗t }.

(d) Reconstruct the process {ĝ} based on estimated coefficients as

ĝ∗t (θ0) =
p∑

j=1

α̂ jĝ∗t− j(θ0) + ê∗t . (3.2)
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We label ĝ∗t (θ0) as bootstrapped moment indicators.

(e) Compute the EL tests. For LM and K, bootstrapped tests are denoted as LM∗,K∗.

(f) Replicate B times steps from (b)–(e) and obtain the empirical distribution of the tests. Decide
bootstrap critical values at the α ∗ 100% significance level, which are labelled as cv∗(α). We
choose B = 500 in our simulation.

(g) Reject the null hypothesis if

LM (or K) > cv∗(α). (3.3)

In the next section, we conduct a simulation study to see the size performance of the original EL tests
and their bootstrapped versions.

4. Simulation Results

We conduct a simulation study to see how effectively the bootstrap methods work. Simulation design
basically follows GS (2008) and Otsu (2006). Consider a linear model with a single endogenous
variable,

y = Yθ0 + e, (4.1)
Y = ZΠ + u,

where Y is n by 1 and instruments Z are n by k matrix. As seen above, the value of Π reflects the
strength of instrumental variable(IV). We set the value ofΠ equal to 0.5. Note that the null distribution
of the test does not depend on the value of Π, which is confirmed by trying different values in our
simulation, though not reported. The number of moments k is set to 1, for simplicity. The null
hypothesis is given by θ0 = 0, and the moment condition equals to E(Ztet) = 0 for t = 1, . . . , n. The
sample size is n is set to 100.

Serial dependence is allowed in both innovation process of y and instruments. We simply assume
that they follow AR(1) processes.

et = ρet−1 + vt and Zt = δZt−1 + ϵt, (4.2)

where vt and ϵt are independent Normal(0, 1). The AR coefficients are equally set as ρ = δ = 0.5 or
0.9. Large values of AR process are expected to deteriorate the size performance of the test. Further,
we set Cov(u, v) = 0.5. Different choice of this covariance structures have limited impact on the
performance of the tests. We only report one case.

In computing long-run variance for LM and K test given in Section 2, we consider a rule for the
bandwidth choice as M = T γ, for γ = [0.2, 0.5). By this rule, we include the values of M from 2 up
to 10. Note that the optimal choice of bandwidths are not formally provided in the EL context. Also,
for the LM test, Bartlett kernel is used for smoothing the moment indicators. To compute the null
rejection probabilities, we conduct 1000 iterations. Bootstrap replications are set to 500 to save time.

Table 1 and Table 2 show the results and are summarized as follows. Firstly, we observe that
the original LM and K-tests generate size distortions that show unstable rejection probabilities over
the different values of the bandwidths. The type I errors of the LM test tends to decrease with the
bandwidth, where the under-rejection problem becomes particularly severe in the case of large value of
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Table 1: Rejection probabilities under the Null at the 5% significance level
AR coefficient= 0.5 Bandwidth

Test 2 4 6 8 10
LM 0.084 0.053 0.031 0.015 0.005
K 0.091 0.075 0.074 0.079 0.084

LM* 0.042 0.048 0.055 0.050 0.049
K* 0.041 0.042 0.045 0.046 0.045

[note] sample size = 100, strength of IV = 0.5, the number of iteration equals to 1000. Bootstrap replication = 500.

Table 2: Rejection probabilities under the Null at the 5% significance level
AR coefficient= 0.9 Bandwidth

Test 2 4 6 8 10
LM 0.272 0.123 0.058 0.028 0.002
K 0.416 0.291 0.220 0.195 0.180

LM* 0.029 0.027 0.029 0.030 0.034
K* 0.027 0.026 0.029 0.028 0.031

[note] Refer to the note in the Table 1.

the bandwidth. The K-test over-rejects regardless of the bandwidth choice. Unlike the i.i.d. setup, the
tests behave very differently as the magnitude of dependence increases. However, sieve bootstrapped
version of tests achieve sizes close to the nominal level of 5%, which are minimally affected by the
bandwidth selection. Though minor in magnitude, LM test works better than K-test when bootstraps
are combined. Table 2 lists the results when the AR coefficient is equal to 0.9, which implies a
strong correlation of the data. Sizes of the LM and K-test show a sharply decreasing pattern with
the bandwidth. As expected, the unstable pattern becomes more severe than in the previous case.
However, bootstrapped versions (though slightly under-rejected) yield a reasonable size performance.
Their performance could be further improved if large values of AR lags are allowed at the cost of
computing time. From the above results, we confirm the advantages of applying sieve bootstraps to
the EL tests. Gauss programs used in the simulations are available upon request.

5. Conclusion

We consider sieve bootstraps for empirical likelihood tests in time series moment condition models.
Test statistics often generate size distortions due to serial dependence. We found a significant size
refinement of the bootstrapped versions of the LM type test statistic that was nearly irrespective of the
bandwidth choice in long-run variance estimation.
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