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Abstract
This article introduces the R package ELCIC (https://cran.r-project.org/web/packages/ELCIC/

index.html), which provides an empirical likelihood-based information criterion (ELCIC) for model selection
that includes, but is not limited to, variable selection. The empirical likelihood is a semi-parametric approach to
draw statistical inference that does not require distribution assumptions for data generation. Therefore, ELCIC is
more robust and versatile in the context of model selection compared to the currently existing information criteria.
This paper illustrates several applications of ELCIC, including its use in generalized linear models, generalized
estimating equations (GEE) for longitudinal data, and weighted GEE (WGEE) for missing longitudinal data
under the mechanisms of missing at random and dropout.
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1. Introduction

Model selection is an essential aspect of data analysis that is used for valid inference or improved
prediction. This process encompasses many aspects, such as variable selection in the mean struc-
ture, correlation structure selection in longitudinal data analysis, and tuning parameter selection in
penalized regressions. However, most existing information criteria critically depend on distribution
assumptions and have limited applications in more complicated model selection problems, other than
variable selection (Chen and Lazar, 2012). Information criteria like the Akaike information crite-
rion (AIC) (Akaike, 1974), Bayesian information criterion (BIC) (Schwarz, 1978), and generalized
information criteria (GIC) (Konishi and Kitagawa, 1996) are likelihood-based and rely heavily on
parametric distribution assumptions. They are sensitive to distribution misspecification and data het-
erogeneity (Chen et al., 2020). In the presence of longitudinal outcomes, some information criteria
have been developed under the semi-parametric framework, such as the quasi-likelihood information
criterion (QIC) (Pan, 2001), which is widely used in generalized estimation equations (GEE) (Liang
and Zeger, 1986). Other examples include the missing longitudinal information criterion (MLIC)
(Shen and Chen, 2012), the weighted quasi-likelihood information criterion (QICW) (Gosho, 2016),
and the joint longitudinal information criterion (JLIC) (Shen and Chen, 2018). These criteria are
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applied to longitudinal data with dropout missingness; however, existing criteria suffer from a loss
of variable selection power under small sample sizes (Chen et al., 2019). Several R packages are
available for model selection criteria, such as the AIC (R function AIC) and the BIC (R function BIC),
which are provided as generic functions in R. The R package repolr (Parsons, 2017) provides the
QIC (R function QIC). Additionally, the R package wgeesel (Xu et al., 2019) offers the MLIC (R
function MLIC.gee) and QICW (R function QICW.gee) for longitudinal data analysis.

To minimize the negative impact of distribution misspecification, the empirical likelihood (EL),
a data-driven approach that avoids distribution specifications but still borrows likelihood properties
(Owen, 1988; Qin and Lawless, 1994) has gained significant attention for data analysis and statis-
tical inference (Owen, 2001). However, EL-based information criteria for model selection are still
not well studied. Kolaczyk (1995) first proposed the empirical information criterion (EIC) based on
the Kullback-Leibler divergence between discrete empirical distributions, but there was a severe con-
vergence issue. To alleviate the computation issue, Variyath et al. (2010) advocated an empirical
AIC and an empirical BIC based on the adjusted empirical likelihood by incorporating an additional
parameter (Chen et al., 2008). However, these criteria require searching for empirical likelihood esti-
mators, which could be computationally expensive. Most recently, Chen et al. (2019) proposed joint
empirical Bayesian information criteria (JEAIC and JEBIC) for missing longitudinal data under the
mechanisms of missing at random (MAR) and dropout. Later, Chen et al. (2020) generalized this
criterion and proposed the EL-based consistent information criterion (ELCIC), which targets model
selection in a more general context; one that is not limited to variable selection. Specifically, EL-
CIC was initially derived from the asymptotic expansion of the marginal likelihood in a Bayesian
framework, and its consistent model selection property (Shao, 1997; Variyath et al., 2010) was then
established in a general context by allowing the use of a regular plug-in estimator to calculate this
criterion.

This paper presents the R package ELCIC, which includes the proposed EL-based information
criterion for model selection and provides a tutorial on its use in widely applied parametric and semi-
parametric models. We also extend the ELCIC to handle longitudinal data with dropout missingness.
The layout of the paper is as follows. Section 2 describes the development of ELCIC. In Section 3,
we illustrate the use of core functions for simulated data. Section 4 provides a brief data application
of ELCIC to data extracted from the National Institute of Mental Health Schizophrenia Collaborative
Study. Finally, we summarize the features of this package and discuss future work in Section 5.

2. Methodology

2.1. Empirical likelihood

Owen (1988) proposed an empirical likelihood approach for parameter estimation and inference. Let
D � Di

n
i�1 denote the full data, where Di � pXT

i ,Y
T
i qT are assumed to be independent and identically

distributed (i.i.d.), with Yi representing the outcomes of interest and Xi including the covariates under
consideration, and i � 1, . . . , n. Given that some pre-specified estimating equations of gpDi,γq,
which have a p� 1 vector of parameters γ satisfying E gpDi,γ0q � 0 with the true parameters γ0, the
empirical likelihood ratio is then defined as:

RF � sup
γ,p1,...,pn

#
n¹

i�1

npi; pi ¥ 0,
ņ

i�1

pi � 1,
ņ

i�1

pi g pDi,γq � 0

+
. (2.1)

In contrast to traditional likelihood, empirical likelihood utilizes point mass probabilities for ob-
servations. Thus, information from the data is automatically and efficiently borrowed from the esti-
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mating equation constraints (Qin and Lawless, 1994). This desirable property demonstrates the great
potential for model selection. Given the estimator denoted by γ̂, the negative logarithm of the empir-
ical likelihood ratio can be easily calculated based on the Lagrange multiplier method (Owen, 2001)
as follows:

l � � log RF �λ̂, γ̂� � ņ

i�1

log
 

1 � λ̂T g pDi, γ̂q
(
, (2.2)

where the parameter estimate λ̂ can be obtained by solving the following equations using the Newton-
Raphson method

1
n

ņ

i�1

g pDi, γ̂q
1 � λT g pDi, γ̂q � 0. (2.3)

2.2. Description of ELCIC

To implement selection based on empirical likelihood, a full set of estimating functions gpDi,γq
is specified with a length (denoted by L) larger than the length of the parameter vector γ (defined
above with dimension p) (Kolaczyk, 1995; Variyath et al., 2010; Chen and Lazar, 2012). Suppose
a plug-in estimator denoted as γ̂EE has been obtained from an external estimating equation, and
the corresponding Lagrange multiplier estimator λ̂EE has been calculated under regular conditions.
Then, the proposed ELCIC is defined as

ELCIC � �2 log RF �λ̂EE , γ̂EE
�� p log n. (2.4)

One desired property of the proposed ELCIC is that it does not require prior specifications or paramet-
ric likelihood. We will now provide three examples of estimating functions gpDi;γq for both variable
selection and more general model selection, in terms of data structures.

2.3. Case study I: Generalized linear models

Nelder and Wedderburn (1972) introduced the GLM to unify the theory for different models in data
analysis with continuous and categorical outcomes. Under this framework, the full estimating equa-
tions g in (2.1) can be simply defined as the score functions

g pDi,βq � Xi
 

Yi � µi
�
β̃
�(
, (2.5)

where µipβ̃q with β̃ � pβT , 0T qT is the conditional expectation of Yi modeled by f�1pXT
i β̃q with some

pre-specified canonical link function f . As (2.5) is only valid when the mean structure is correctly
specified and does not require the second moment, ELCIC under the full estimating equations in (2.5)
can handle the scenario when the variance structure is mis-specified, such as with over-dispersion,
which is often encountered in the analysis of count data (Variyath et al., 2010; Chen et al., 2020).

2.4. Case study II: Longitudinal data with GEE

For longitudinal data, Liang and Zeger (1986) introduced the marginal model to conduct statistical
inference without specifying the joint distribution. A correctly specified mean structure is always the
key to estimation consistency. Meanwhile, correctly identifying the “working” correlation structure
can further improve the efficiency in GEE. In this case, we specify the full estimating equation so
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that ELCIC can simultaneously select the marginal mean and the correlation structure for repeated
measurements. Existing criteria, such as the QIC (Pan, 2001), cannot handle joint selection.

To achieve joint selection and for simplicity, we assume a balanced design with J observations
for each subject. For subject i, the marginal mean is denoted as µi with a variance-covariance matrix
Vi. The over-dispersion parameter is denoted as φ (assumed known but can also be consistently
estimated), and the correlation coefficient vector is ρc � pρc

1, . . . , ρ
c
J�1qT . Here, the superscript c

indicates the type of correlation structure. For instance, under an exchangeable structure, we have
ρEXC � pρ, . . . , ρqT , and under an Autoregressive (AR1) structure, we have ρAR1 � pρ, . . . , ρpJ�1qqT .
Thus, the full estimating function in (2.1) is defined as

g pDi,β, ρ
cq �

�
HT

i V�1
i

 
Yi � µi

�
β̃
�(

Ui
�
β̃
�� h pρcq φ

�
, (2.6)

where β̃ is defined as pβT , 0T qT , Hi denotes the first derivative of µi with respect to β̃, and Uipβ̃q �
pUi1pβ̃q,Ui2pβ̃q, . . . ,UipJ�1qpβ̃qqT with

Uim
�
β̃
� � J�m̧

j�1

ei j
�
β̃
�

ei, j�m
�
β̃
�
, for m � 1, . . . , J � 1. (2.7)

Also, ei j represents the standardized residual term pyi j � µi jq{?νi j for i � 1, . . . , n and j � 1, . . . , J.
Finally, hpρcq is defined as pρc

1pT �1� p{nq, . . . , ρc
J�1p1� p{nqqT . Additional details of the methods

are found in Chen et al. (2020).

2.5. Case study III: Longitudinal data with WGEE

WGEE is proposed for longitudinal data with dropouts under MAR by incorporating an inverse prob-
ability weight (IPW) matrix Wi to adjust for the missing data (Robins et al., 1995). Note that Wi is cal-
culated based on the inverse probability of the observed outcomes, which is defined as the weight ma-
trix with diagonal elements Ri j{ω̂i j, j � 1, . . . , J, where ωi j � PrpRi j � 1|Diq, and Ri j is the indicator
that takes a value of 1 when observing the jth outcome of subject i. Note that ωi j � πi1�πi2�� � ��πi j

where πi1 � 1 (outcomes at baseline are all observed) and πi j � PrpRi j � 1|Ri, j�1 � 1, Dpoq
i q, j �

2, . . . , J with Dpoq
i as observed data. Given the data pRi j, Diq, πi j can be estimated based on the partial

likelihood from a logistic regression of
°n

i�1
°T

j�2 Ri, j�1 logtπi jpθqRi jr1 � πi jpθqs1�Ri ju, where θ is a
q�1 vector of regression parameters with consistent estimates obtained by solving the corresponding
score function. In this dropout missingness mechanism, the full estimating function in (2.1) is defined
as

g pDi,β, ρ
cq �

�
HT

i V�1
i Wi

 
Yi � µi

�
β̃
�(

Ui
�
β̃
�� h pρcq φ

�
, (2.8)

with notations consistent with subsection 2.4. Additional details of the methods are found in Chen et
al. (2019, 2020).

3. Core functions

To better illustrate our package, we summarize the comparison of input and output information be-
tween the core functions in Table 1. The details are discussed in the following subsections.
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Table 1: Core functions

ELCICglm ELCICgee ELCICwgee

Criteria output ELCIC/AIC/BIC/GIC ELCIC ELCIC
Repeated measurement No Yes Yes
Model selection Yes Yes Yes
Correlation selection No Yes Yes
Missing mechanism No missing allowed MCAR MAR

3.1. Cross-Sectional data

The ELCIC package provides simulated and cross-sectional data (data(glmsimdata)) to illustrate
the example of a generalized linear model.

library(ELCIC)

> # load data

> data(glmsimdata)

> # extract information

> data.glm <- data.frame(y=glmsimdata$y, glmsimdata$x)

Note that both the covariate matrix x and the response y should be a fully observed matrix without
missing data.

> # each participant has one record

> head(data.glm)

y intercept x1 x2 x3

1 2 1 -0.90899697 -0.11401724 0.151977206

2 3 1 0.63963113 -0.38777828 0.090733856

3 0 1 0.04996491 -0.58600762 -0.885259206

4 1 1 -0.29590319 0.39270464 1.320999120

5 1 1 -0.06996223 -0.02191423 1.370276318

6 5 1 -0.22548831 -0.20156386 -0.004214181

Suppose we are interested in the mean structure f pµ1q � β0 �β1x1 �β2x2, where f p�q is a known and
pre-specified link function. Then, we can specify this mean structure via models <- list(y�x1+x2).
In addition, the function ELCICglm is able to produce different criteria based on the mean structure
µ1, such as AIC, BIC, GIC, etc.

> models <- list(y˜x1+x2)

> output<-ELCICglm(models, data.glm, family=poisson())

ELCIC for glm

************************************************

ELCIC AIC BIC GIC

17.11135 1278.38352 1289.49487 1289.90843

************************************************

model 1: y ˜ x1 + x2

************************************************

The model selected by ELCIC: y ˜ x1 + x2

Now suppose we are interested in a sequence of mean models. The function ELCICglm is able
to output the criteria (ELCIC, AIC, BIC, GIC) for different mean structures. For instance, there are
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three candidate mean models with f pµ1q � β0 � β1x1 � β2x2, f pµ2q � β0 � β1x1 � β2x2 � β3x3 and
f pµ3q � β0 � β1x1, and we are interested in learning which one fits the data the best. We can run the
codes below:

> models <- list(y˜x1, y˜x1+x2, y˜x1+x2+x3)

> output<-ELCICglm(models, data=data.glm, family=poisson())

ELCIC for glm

************************************************

model 1 model 2 model 3

ELCIC 105.0823 21.33646 22.81513

AIC 1410.5555 1278.38352 1274.30506

BIC 1417.9631 1289.49487 1289.12019

GIC 1421.3349 1289.90843 1286.97805

************************************************

model 1: y ˜ x1

model 2: y ˜ x1 + x2

model 3: y ˜ x1 + x2 + x3

************************************************

The model selected by ELCIC: y ˜ x1 + x2

From the output, ELCIC implies that µ1 has the best fit in terms of the smallest criterion value.
Note that AIC cannot theoretically guarantee the consistency of model selection (i.e., capturing the
true model exactly) when there are multiple correct candidate models (Shao, 1997; Variyath et al.,
2010). In this situation, AIC tends to select a larger model that includes more nuisance variables,
while ELCIC is capable of identifying the true model without involving any nuisance variables. In
addition to the model demonstrated above, ELCICglm also allows the inclusion of interaction terms
(e.g., x1 � x2) and other types of functions (e.g., Ipx2

1q).

3.2. Longitudinal data

The ELCIC package also includes a simulated longitudinal dataset called (data(geesimdata)). We
can use this dataset to demonstrate how to use the ELCICgee function to calculate ELCIC values for
a given candidate marginal mean model and a pre-specified “working” correlation structure.

> # load data

> data(geesimdata)

> # extract information

> id<-geesimdata$id

> data.gee <- data.frame(id=id, y=geesimdata$y, geesimdata$x)

Both x and y can have missing values at random. In addition, the total number of observations for
each subject and a vector indicating the observation r should be specified.

> # intercept should be included in the covariate matrix

> head(data.gee)

id y intercept x1 x2 x3

1 1 0 1 -0.948627235 0.76795271 0.2585333

2 1 0 1 0.006342953 -0.58221954 0.2585333
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3 1 0 1 0.147142185 0.20105404 0.2585333

4 2 1 1 0.302887069 -0.26968169 -0.1803438

5 2 6 1 1.366432436 1.46812968 -0.1803438

6 2 2 1 0.027927011 -0.08221224 -0.1803438

> # each participant has three records

> time<-3

> # r is a vector indicating non-informative missingness: 1 for observed reco

rds,

> # and 0 for unobserved records.

> r<-rep(1,length(id))

Suppose we are interested in the mean structure f pµ1q � β0 � β1x1 � β2x2 with three different
correlation structures (independence, exchangeable, and ar1, which are the defaults). Then, we can
specify the mean structure via models <- list(y � x1+x2).

> # the outcome is categorical

> family<-poisson()

> candidate.cor.sets<-c("exchangeable","independence","ar1")

> models <- list(y ˜x1+x2)

> output<-ELCICgee(models, candidate.cor.sets,data=data.gee,family,r,id,time)

ELCIC for gee

************************************************

exchangeable independence ar1

21.22553 42.24994 27.07361

************************************************

model 1: y ˜ x1 + x2

************************************************

The mean model selected by ELCIC: y ˜ x1 + x2

The correlation structure selected by ELCIC: "exchangeable"

Based on the output, we can see that the exchangeable correlation structure has the smallest ELCIC
(21.22553), indicating that it is the most reasonable choice.

The ELCICgee function is powerful for running the joint selection of marginal mean structure
and correlation structure. For example, if we want to compare two mean structures, f pµ1q � β0 �
β1x1 � β2x2 and f pµ2q � β0 � β1x1, across different correlation structures, we can define models <-
list(y�x1, y�x1+x2), candidate.cor.sets<-c("exchangeable","independence","ar1")
by running the following codes:

> models <- list(y˜x1, y˜x1+x2)

> candidate.cor.sets<-c("exchangeable","independence","ar1")

> output<-ELCICgee(models, candidate.cor.sets,data=data.gee,family,r,id,time)

ELCIC for gee

************************************************

model 1 model 2

exchangeable 145.7660 21.22553

independence 134.6632 42.24994

ar1 140.8642 27.07361
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************************************************

model 1: y ˜ x1

model 2: y ˜ x1 + x2

************************************************

The mean model selected by ELCIC: y ˜ x1 + x2

The correlation structure selected by ELCIC: "exchangeable"

Based on the above results, we find that the mean structure µ1 with an exchangeable correlation
structure has the smallest ELCIC and therefore might be a better choice than the other options. Note
that, not limited to ELCIC, the function QICc.gee provides an output based on QIC, which is not
shown here. Additionally, like ELCICglm, ELCICgee also allows for interaction terms and other types
of functions.

3.3. Longitudinal data with dropout missingness

This section provides a tutorial for ELCIC-based model selection in the application of longitudinal
data with dropout. We downloaded the simulated data (data(wgeesimdata)) to illustrate how to
obtain ELCIC from the function ELCICwgee. In contrast to the case in Section 3.2, we need to
identify two models: One for the main model of the longitudinal data and another for the probability
of observing the outcome, i.e., πi j.

> data(wgeesimdata)

> id<-wgeesimdata$id

> data.wgee <- data.frame(y=wgeesimdata$y, wgeesimdata$x, x_mis1=wgeesimdata$

x_mis[,2])

> head(data.wgee, n=10)

y intercept x1 x2 x3 x_mis1

1 0 1 0.7701263 0 1 -0.0381310

2 NA 1 0.7701263 1 1 -0.0381310

3 NA 1 0.7701263 2 1 -0.0381310

4 1 1 0.6960051 0 0 0.4464537

5 NA 1 0.6960051 1 0 0.4464537

6 NA 1 0.6960051 2 0 0.4464537

7 0 1 0.5147030 0 1 0.1135577

8 0 1 0.5147030 1 1 0.1135577

9 1 1 0.5147030 2 1 0.1135577

10 1 1 0.8456476 0 1 0.1772856

Here, x is the covariate matrix for modeling longitudinal data, and x mis is the covariate matrix
for modeling the missing data mechanism. Notice that in both models, the covariate matrix is recom-
mended to be fully observed. Again, r is a vector which indicates observations that are missing as
0 and observations that are observed as 1. In addition, we need to specify the outcome type and the
number of observation times.

> # each participant has three records

> time<-3

> # the outcome is binary

> family<-binomial()
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> # r is a vector indicating non-informative missingness: 1 for observed reco

rds,

> # and 0 for unobserved records.

> r<-wgeesimdata$obs_ind

Suppose we are interested in the mean structure f pµ1q � β0 � β1x1 � β2x2. Then, we are able to
obtain ELCIC under different correlation structures.

> models <- list(y˜x1+x2)

> model_mis<-r˜x_mis1

> candidate.cor.sets<-c("exchangeable")

> output<-ELCICwgee(models, candidate.cor.sets,data=data.wgee,

+ model_mis,family,r,id,time)

ELCIC for wgee

************************************************

exchangeable independence ar1

18.80669 32.38873 20.17050

************************************************

model 1: y ˜ x1 + x2

************************************************

The mean model selected by ELCIC: y ˜ x1 + x2

The correlation structure selected by ELCIC: "exchangeable"

In this example, we learn that the longitudinal data model with the exchangeable correlation struc-
ture has the smallest ELCIC and is therefore a better choice. Next, we can run the joint selection for
marginal mean structure and correlation structure. To be specific, if we are interested in comparing
the mean structure µ1 � β0 � β1x1 � β2x2 and the mean structure µ2 � β0 � β1x1, we can use
the following code to specify the candidate model. Note that there exists an alternative expression
models <- list(y�x1, y�x1+x2) . The results are summarized below:

> models <- list(y˜x1, y˜x1+x2)

> candidate.cor.sets<-c("exchangeable","independence","ar1")

> output<-ELCICwgee(models, candidate.cor.sets,data=data.wgee,

+ model_mis,family,r,id,time)

ELCIC for wgee

************************************************

model 1 model 2

exchangeable 25.00851 18.80669

independence 34.21868 32.38873

ar1 24.88281 20.17050

************************************************

model 1: y ˜ x1

model 2: y ˜ x1 + x2

************************************************

The mean model selected by ELCIC: y ˜ x1 + x2

The correlation structure selected by ELCIC: "exchangeable"

In the end, the mean structure µ1 with the exchangeable correlation structure is favored more
because it has the smallest ELCIC. In addition, other functions such as MLICwgee (Shen and Chen,
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2012) and QICwgee (Gosho, 2016) provide outputs based on MLIC and QICW, respectively. However,
the results for these functions are omitted here.

4. Real data application

We provide several real data in the ELCIC package and here we use one as an illustration. The dataset
impsdata originally appeared in the National Institute of Mental Health Schizophrenia Collaborative
Study (Gibbons and Hedeker, 1994). A total of 386 patients were enrolled in the study, including 293
patients in the treatment group (Drug = 1) and 93 patients in the placebo group (Drug = 0). Each
patient had four visits (Weeks 0, 1, 3, and 6). During each visit, the severity of the schizophrenia
disorder (IMPS79) was measured, which ranged from 0 to 7. We dichotomized IMPS79 using the
threshold of 4 (Y � 1 if IMPS79 ¥ 4; otherwise, Y � 0) and took the square root of Time (in
weeks) along similar lines to Xu et al. (2018). We are interested in exploring the marginal association
between the risk factors (i.e., drugs, sex) and the response Y . 7.3% of the data is missing due to patient
dropout. The missing mechanism should be investigated before model fitting. Xu et al. (2018) showed
that these data sets reasonably assume the MAR mechanism, as the trajectories behave differently in
the treatment and placebo groups and the mechanism of patient dropout does not depend solely on
covariates.

> data(impsdata)

> id<-impsdata$id

> r<-impsdata$r

> data.real <- data.frame(id=id,y=impsdata$y, impsdata$x)

> head(data.real,n=10)

id y Intercept Time Sex Drug Time.Sex Sex.Drug Drug.Time

1 1 1 1 0.000000 1 1 0.000000 1 0.000000

2 1 0 1 1.000000 1 1 1.000000 1 1.000000

3 1 0 1 1.732051 1 1 1.732051 1 1.732051

4 1 1 1 2.449490 1 1 2.449490 1 2.449490

5 2 1 1 0.000000 1 1 0.000000 1 0.000000

6 2 0 1 1.000000 1 1 1.000000 1 1.000000

7 2 0 1 1.732051 1 1 1.732051 1 1.732051

8 2 0 1 2.449490 1 1 2.449490 1 2.449490

9 3 1 1 0.000000 1 1 0.000000 1 0.000000

10 3 0 1 1.000000 1 1 1.000000 1 1.000000

For candidate covariates, we considered Time, Sex, Drug, Time*Sex, Sex*Drug, and Drug*Time
effects. Additionally, we evaluated several candidate correlation structures, including independence,
exchangeable, and AR1. We then used ELCIC for both model selection and correlation structure
selection.

> # each participant has three records

> time<-4

> # the outcome is binary

> family=binomial()

> models <- list(y˜Time, y˜Drug,y˜Time+Drug, y˜Time*Drug,y˜Time+Sex+Drug,

+ y˜Time+Sex+Drug+Time:Sex+Sex:Drug+Drug:Time)

> model_mis<-r˜Drug+Time+Sex



ELCIC: An R package for model selection 365

> candidate.cor.sets<-c("exchangeable","independence","ar1")

> output_ELCIC<-ELCICwgee(models, candidate.cor.sets,data=data.real,model_mis,

family,}

+ r,id,time)

ELCIC for wgee

************************************************

model 1 model 2 model 3 model 4 model 5 model 6

exchangeable 105.79577 472.7708 103.99110 110.23972 110.3594 129.00672

independence 223.97685 477.8945 217.88094 222.16051 221.6483 236.57882

ar1 41.89357 371.4877 34.44123 40.40525 39.9565 57.40167

************************************************

model 1: y ˜ Time

model 2: y ˜ Drug

model 3: y ˜ Time + Drug

model 4: y ˜ Time * Drug

model 5: y ˜ Time + Sex + Drug

model 6: y ˜ Time + Sex + Drug + Time:Sex + Sex:Drug + Drug:Time

****************

The mean model selected by ELCIC: y ˜ Time + Drug

The correlation structure selected by ELCIC: "ar1"

We now compare the result of ELCIC to the values from MLIC and QICW.

> output_MLIC<-MLICwgee(models, candidate.cor.sets,data=data.real,

+ model_mis,family,r,id,time)

MLIC for wgee

************************************************

ar1

model 1 260.8

model 2 321.3

model 3 255.0

model 4 255.2

model 5 255.7

model 6 256.8

************************************************

model 1: y ˜ Time

model 2: y ˜ Drug

model 3: y ˜ Time + Drug

model 4: y ˜ Time * Drug

model 5: y ˜ Time + Sex + Drug

model 6: y ˜ Time + Sex + Drug + Time:Sex + Sex:Drug + Drug:Time

************************************************

The mean model selected by MLIC: y ˜ Time + Drug

The correlation structure selected by MLIC: "ar1"

> output_QICW<-QICWwgee(models,

candidate.cor.sets,data=data.real,

+ model_mis,family,r,id,time)
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QICW for wgee

************************************************

ar1

model 1 1549.7

model 2 1871.3

model 3 1525.7

model 4 1525.8

model 5 1528.8

model 6 1533.7

************************************************

model 1: y ˜ Time

model 2: y ˜ Drug

model 3: y ˜ Time + Drug

model 4: y ˜ Time * Drug

model 5: y ˜ Time + Sex + Drug

model 6: y ˜ Time + Sex + Drug + Time:Sex + Sex:Drug + Drug:Time

************************************************

The mean model selected by QICW: y ˜ Time + Drug

The correlation structure selected by QICW: "ar1"

The above results show that ELCIC selects the third model with the autocorrelation structure as the
best, which is consistent with the MLIC and QICW results.

5. Discussion

This article provides details on the core functions of the R package ELCIC and illustrates how to apply
these functions through three case studies. The package has a broad scope of applications in model
selection across different data structures, and it includes commonly used criteria for comparison in
each setup. The ELCIC framework offers a data-driven approach to model selection that overcomes
limitations of classic EL-based criteria by relaxing the estimation procedure. The approach can be
extended to fit model selection needs in practical settings where no existing information criterion
fits well. Extensive numerical studies conducted by Chen et al. (2019) and Chen et al. (2020)
have shown that ELCIC outperforms existing information criteria and is computationally efficient.
ELCIC has demonstrated robustness and power in the presence of highly complex and diverse data.
Our package offers a user-friendly approach to a wide range of applications. In the future, we plan to
incorporate additional functions and applications in ELCIC to address more model selection problems
with additional options of link functions and intermittent missingness in outcomes, missing covariates
(Chen et al., 2010, 2021), informative cluster size (Bible et al., 2016; Shen et al., 2022), time-to-event
outcomes (Hickey et al., 2016), multivariate outcomes with primary and secondary interests (Chen
et al., 2022), among others. As a starting point, ELCIC shows potential and robustness in exploring
statistical issues related to model selection with highly complex and diverse data.
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