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Optimal Design for Locally Weighted

Quasi-Likelihood Response Curve Estimator
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Abstract

The estimation of the response curve is the important problem in the quantal
bioassay. When we estimate the response curve, we determine the design points in
advance of the experiment. Then naturally we have a question of which design would
be optimal. As a response curve estimator, locally weighted quasi-likelihood estimator
has several more appealing features than the traditional nonparametric estimators. The
optimal design density for the locally weighted quasi-likelihood estimator is derived
and its ability both in theoretical and in empirical point of view are investigated.

Keywords : Local quasi-likelihood, Nonparametric regression, Optimal design, Response curve.

1. Introduction

In many cases, the outcome of an experiment in bioassay is dichotomous - success or

failure. The binary response Y ; of the 7th subject at stimulus level x; is assumed to be

an independent random variables with mean p(x;), ¢=1,...,n Here p denotes response
curve. Let assume pe C?([0,1]). The stimulus level x,s are the design points fixed in

advance. The statistical aim is the estimation of curve p without assuming a parametric
model for p.

The traditional nonparametric regression methods can be used for the estimation of p.
Muller and Schmitt (1988) defined the kernel response curve estimator in analogy to the
nonparametric regression of Gasser and Muller (1984). It is known that the local polynomial
regression has several more appealing features than the traditional nonparametric regression.
The better performance near boundaries is one of them (Fan, 1992). Park (1999) considered
the local linear regression as the response curve estimator and compared the finite sample
performance with Muller and Schmitt’s kernel response curve estimator.

However, these estimators ignore the binary nature of response, so they have some
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problems as the estimator of P(Y=1/X=x). The obvious one is that the fitted curve is not
guaranteed to lie in the interval (0,1). To overcome these difficulties, a generalization of the
weighting mechanism is needed. It is well known that generalized linear model (Nelder and
Wedderburn, 1972) is the appropriate technique for binary response and can be applied to the
nonparametric regression setting (Tibshirani and Hastie, 1987; Staniswalis, 1989). As a further
extension, Wedderburn (1974) first considered a quasi-likelihood method, which requires only
specification of a relationship between the mean and the variance of the response. Optimal
properties of the quasi-likelihood methods have received considerable attention in the literature
(Godambe and Heyde, 1987).

The kernel smoothing idea can be extended to the case where the quasi-likelihood is used.
Fan, Heckman, and Wand (1995) proposed the locally weighted quasi-likelihood estimators in
one-parameter exponential family, and we take their estimator as the response curve estimator
in this paper.

We assume that the design points x ;s are chosen by

fo Ht)dt = ;;_11 (1)

where f is a strictly positive density satisfying fe Lip([0,1]). We refer to f as the
design density which uniquely determines a sequence of designs. Muller (1984) first discussed
the question of which design would be optimal with respect to asymptotic MISE for the
nonparametric kernel regression. Muller and Schmitt (1988) and Park (1999) discussed the
optimal design density for their response curve estimators.

In this paper, we will derive the optimal design density of the locally weighted
quasi-likelihood response curve estimator with respect to asymptotic MISE criterion. In
Section 2, the properties of the locally weighted quasi-likelihood estimator is summarized and
its optimal design density is derived. In Section 3, the small sample properties of the optimal
design is investigated by the simulation.

2. Response Curve Estimator and Its Optimal Design
2.1 Locally Weighted Quasi-Likelihood Estimator

Consider binary response variables with single covariate case. Let Y,,...,Y, be the
independent binary random variables with success probability p(x,;) = P(Y=1|X=x,). We

will assume that p& C2?([0,1]). In parametric generalized linear model it is usual to model

a transformation of the regression function E(VIX=2x) = p(x) as linear. The model is
given by

7(x) = Bo+ Brix+ -+ Bax?= g(p(x)) 2)
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where g is the link function and the logit function is the canonical link.

In many applications, the full likelihood function is unknown and one can only specify the
relationship between the mean and the variance. Suppose the conditional variance is modeled
as Var(Y|X=x) = V(p(x)) for some specific function V. In this case, the estimation of
the mean can be achieved by replacing the conditional log-likelihood by the quasi-likelihood

function Q(p(x), y) which satisfies

_J _ V- w
dw Q(W,y)~ V(w)’ (3)

and estimating B = (B¢,....84) T by maximizing the quasi-likelihood

;Q[g—l(ﬁo + Bixit+ o+ Bax), Vil (4)

Since we deal with binary response, V{(p) = p(1 —p) and in this case, the
quasi-likelihood method coincides with the Bernoulli log~likelihood method.

Fan, Heckman, and Wand (1995) proposed the local quasi-likelihood using kernel weights,
which is given by

2 QLe T (B + Bulxi =)+ + Buleim) D, VK| ) 5)

where % is the bandwidth and K is the kernel function. Maximizing (5) with respect to

B=(By,....8q) T leads to the maximum local quasi-likelihood estimate

Wxd h) = By 6)

and the local quasi-likelihood response curve estimate can be computed by applying the
inverse link function

P(cd b = g {((xh). (7)

Suppose the order of local polynomial d is odd. Then, by the results of Fan, Heckman, and

Wand (1995), asymptotic mean squared error of 5(x d, k) is given by
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2
AMSE ( X xd, 1)) = n2*?. (f2d+lK0,d(2) dz)z( 29 V() - p(0)(1 = p(x)) )

(d+1)! ®)
+ ﬁﬂl—ﬁw }(;) D (Ko d2) de

where K, 4 is the equivalent kernel defined in Fan and Gijbels (1996), and f(x) is the

marginal density of X. We integrate (8) to obtain the asymptotic mean integrated error

2
AMISE ( Hxd, b)) = k242 (fzd“Ko,d(z)dz)z- f( ”(dﬂ)(x)(c'li(fgfl‘”(x))) e

+ﬁ fKo,d(z)zdzf—Mx}(—;)Q(mdx

(9)

Then we can obtain the optimal bandwidth with respect to AMISE criterion by minimizing
(9) with respect to &, which is given by

1/(2d+3)

(d+D! [ Ko d2) dz [[5()(1~ p(2)/A2)1dx

Z (10)
(2d+2)( [2"'Ko L2)dz) (77D (01~ pe)] " -
Substituting (10) into (9) leads to the minimal asymptotic MISE
2 (d+1) . _ 2 1/(2d+3)
AMISE o= - [( [ 2 Ko.d2)z) - [(Z—— 2 1=000) )
an

) p(x)(1 — 5(x)) (2d+2)/(2d+3) QA+ 2)/(2d+3)

where

c = (2d+2) ~QITDICHY 4 (974 9y 1/2+D)

2.2 Optimal Design Density

Suppose that the design points, x; , must be given in advance of the experiment. Then
naturally we have a question of which design would be optimal and this question has been
discussed by many authors. For the nonparametric response curve estimator, Muller and
Schmitt (1988) derived the optimal design density of their estimator which is the Gasser and
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Muller type kernel estimator. Park (1999) showed that the optimal design density of the local
regression estimator is identical with that of Muller and Schmitt’s estimator.
For the locally weighted quasi-likelihood estimator, we can derive the optimal design density

with respect to the minimum AMISE by minimizing (11) with respect to Ax).

Theorem 2.1 Assume that the optimal bandwidth with respect to AMISE is used Then

the optimal design density f*(x) of D(x;d, h) with respect to minimal asymptotic MISE is
given by

VA=)
[V oT= 26N ay

i(x) = (12)

To prove this theorem, we need to show that f*(x) is the minimizer of AMISE of (11) and

this follows if we show that f*(x) is the solution of the variational problem

min f

p()(1 — p(x))
f Ax) &
with subject to f Ax)de=1 and Ax)>0, and this was done in Muller (1984). Since
F*(x) is an obvious candidate solution for this problem, Muller (1984) compared it with
1
'+ 6f which represents another form of solution, where fo 8f(x)dx=0 and
|87(x){ < f*(x), and showed that

L p(H(1L= () L s(H(1=p(D)
o Fs oy @2 L

3. Simulation Study

A Monte Carlo study was carried out to investigate the small sample properties of the
optimal design. We compared the small sample performance of the optimal design and the
evenly spaced design. We want to compare the performance of the optimal design with as
many designs as possible, but since we do not allow the sequential allocation of the design
points, the only comparable design is the evenly spaced design. The optimal design points, x;

were chosen by
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fo Fr(Hat = —;_711 (13)

where £~ is the optimal design density in (12), and the evenly spaced design points, x;
were chosen by x; = (i—1)/(n—1), i=1,...,n

Since the optimal design density function contains the true response curve, p, we "cheat”
by using the knowledge of p in choosing the optimal design points. However, without
knowing p, there is no way to construct the optimal design. This unrealistic assumption can
be avoided by using the two stage estimation method or the sequential design algorithm in
Park and Faraway (1998). In this simulation study, we just want to investigate the ability of
the optimal design. After getting the design points, all of the remaining procedures are data

adaptive.
As the true response curve, we used the following five models:

1. The logit model, »,(x)=1[14+ exp(10—20x)] ~*
2. The skewed logit model, p,(x)=[1+ exp(10—20x)] ~*
3. The complementary log-log model, p3(x)=1—exp(—exp(—8+12x))

) _ x—0.4 x—0.6
4. The normal mixture mode], p4~0.50>( 008 )+0.5(D( 0.05 )

5. The Weibull model, p5s=1— exp(—6x)®

Parameters for each models were chosen such that OSx}'Sl, i=1,....,n pi(x) is a
symmetric sigmoid curve, and p,(x) and p3(x) are a non-symmetric sigmoid curve, and
p4(x) is a non-symmetric non-sigmoid curve with three inflection points, and ps(x) is a
non-symmetric strictly concave. curve.

The sample size under consideration were »n = 20, 25, 30, 35, 40, 45, and 50. To generate
the responses for each designs, Uniform(0,1) pseudo random numbers were constructed and

compared with p(x;) for the respective models.

The order of local polynomial was chosen by d=1. An appropriate choice of the bandwidth
is very important. There are some debates for the performance of the several bandwidth
selectors in the literature. However, since we would apply the same bandwidth selector to
both designs, we could choose the most straightforward selection method and chose the
cross-validation method. The evaluation of the locally weighted quasi-likelihood estimator was
done by S-Plus function locfit (Loader, 1999) with logit link function.

The performance of a design might be measured by the Monte Carlo MISE of the response
curve estimator which is constructed by the design. The Monte Carlo MISE were computed
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as the average of
1 BNl )2
LBty —p(t) (14

over 500 simulation samples, where ¢i,...,¢,, are the evenly spaced grid points in [0,1],

and m was chosen by m=1000.

Simulation results are listed in Table 1 and Table 2. In these tables, MISE,, MISE,
denote the MISE of the evenly spaced design, and of the optimal design, respectively, and we
put R= MISE,/ MISE ;. In each model, the optimal design outperforms the evenly spaced
design. For the small sample case, the gain of the optimal design against the evenly spaced
design can be estimated by the ratio of their Monte Carlo MISE. For the large sample case,

the theoretical gain of the optimal design over the evenly spaced design can be computed by
the ratio of AMISE in (11), which is given by

1 8/5
AMISE (optimal design)  _ N p(x)(l_p(x))dx)4/5
AMI i 1
S(evenly spaced design) ( fo A1 — p(x)) a’x)

This ratio depends only on p and it is calculated in Table 3 for each model. For 5 models
considered in the simulation, AMISE for the optimal design is at most 60 % of AMISE for
the evenly spaced design.

4. Discussion

The estimation of the response curve is one of the major topic in the quantal bioassay.
When we estimate the response curve, we determine the design points in advance of the
experiment. Then naturally we have a question of which design would be optimal. We have
driven the optimal design density of the locally weighted quasi-likelihood estimator with
respect to AMISE and investigated its ability both in theoretical and in empirical points of
view.

We would need some prior knowledge of p to construct the optimal design in practice.
Failing that, it is often possible to observe the results of the measurements sequentially so
that we may decide on the position of the next design point on the basis of the previous

observation. In this case, we could adapt the sequential design algorithm in Park and Faraway
(1998).
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Table 1 : Monte Carlo MISE for each design.

Model n MISE , MISE , R
20 0.0209 0.0072 0.3444
25 0.0162 0.0058 0.3580
30 0.0133 0.0043 0.3233
b1 35 0.0103 0.0039 0.3786
40 0.0084 0.0036 0.4285
45 0.0072 0.0029 0.4027
50 0.0067 0.0025 0.3731
20 0.0194 0.0063 0.3247
25 0.0160 0.0046 0.2875
30 0.0121 0.0040 0.3305
22 35 0.0104 0.0035 0.3365
40 0.0090 0.0032 0.3555
45 0.0079 0.0023 0.2911
50 0.0072 0.0020 0.2777
20 0.0208 0.0102 0.4903
25 0.0151 0.0081 0.5364
30 0.0132 0.0061 0.4621
b3 35 0.0109 0.0052 0.4770
40 0.0094 0.0044 0.4680
45 0.0075 0.0041 0.5466
50 0.0067 0.0036 0.5373
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Table 2 : Monte Carlo MISE for each design.

Model | # MISE , MISE , R
20 0.0222 0.0127 05720
25 0.0159 0.0108 0.6792
30 0.0131 0.0078 0.5954
by | 3B 0.0108 0.0065 0.6018
40 0.0083 0.0061 0.6931
45 0.0081 0.0049 0.6049
50 0.0072 0.0048 0.6666
20 0.0198 0.0071 0.3585
25 0.0145 0.0058 0.4000
30 00138 0.0041 0.2971
ps | 3B 0.0073 0.0038 0.5205
40 0.0063 0.0033 0.5238
45 0.0062 0.0030 0.4838
50 0.0061 0.0027 0.4426

Table 3 : Ratio of AMISE of the optimal design to the evenly spaced design

Model P )22 D3 by Ds
Ratio 0.5606 04715 0.5882 04717 0.4887
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