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THE UNIFORM LOCAL ASYMPTOTIC NORMALITY:
AN EMPIRICAL PROCESS THEORY APPROACH

JONGSIG BAE AND SUNGYEUN KiMm

ABSTRACT. We investigate a uniform local asymptotic normality
for likelihood ratio processes based on an independent and identi-
cally distributed local asymptotic problem. Our tool is an empirical
process theory.

1. Introduction

It is known that a local asymptotic normality(LAN) property for the
family of distributions, originated by Le Cam [5], often arises in a finite
dimensional parametric statistical inference.

Sufficient conditions for LAN have been studied by many authors.
See, for example, Fabian and Hannan [2] and Fabian and Hannan [3].

In this paper we investigate a uniform local asymptotic normality
(ULAN) for an independent and identically distributed(IID) asymptotic
problem. Our tool to develop ULAN is an empirical process theory.

In introducing ULAN, we use the setting of an asymptotic problem
of Fabian and Hannan [4] where LAN and a strong local asymptotic
normality(SLAN) are dealt with.

In this paper, for studying ULAN, we turn our view points of the
likelihood ratios into the stochastic processes, not into the random vari-
ables.

In Section 2, we illustrate the concepts of the IID asymptotic problem
and Cramer-regular conditions. We introduce LAN process and ULAN
process based on the likelihood ratio processes indexed by a real line.
We state the main result for the paper.

In Section 3, we provide the proof of the main result in Section 2.
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2. Preliminaries and the main result

We begin by illustrating the concepts of asymptotic problems.

DEFINITION 2.1. [4] £ := (O, P") is an asymptotic problem if for
every n, © C R and P is a probability measure for every 7 € ©. We
say that £ := (6,0, Pl') is a local asymptotic problem at 6 if § € © is
fixed.

DEFINITION 2.2. [4] An asymptotic problem & = (0, P") is an IID
asymptotic problem if there are probability spaces (2,7, P;) and X :=
{Xi : © > 1} such that, for each 7 € ©, P, is a probability mea-
sure on (,7) and X is a sequence of IID random variables under P;
and P! is the restriction of P, to the smallest o-algebra generated by
{X1,...,Xn}. We denote by £ = (0, P;, X) the IID asymptotic prob-
lem generated by X. Similarly, we denote by £ = (6,0, Pr, X) the IID
local asymptotic problem generated by X.

Consider the IID asymptotic problem £ = (©, P, X) generated by X.
Throughout the paper we assume that the asymptotic problem satisfies
the following Cramer regular conditions.

Let © C R. For each € O, there exists a measure u defined on
(R, B) and Py has common density function p(z;6) with respect to u.

C1. The set of all z which satisfies p(z;0) > 0 does not depend on
6.

C2. The functions p(z;8) are three times continuously differentiable
with respect to 8 and a%%l is uniformly bounded where I(z; ) := Inp(z; ).

C3. The integrals [ a(z)p(z;0)u(dr) are possible to differentiate
with respect to € under the sign of the integral.

C4. For each 8 € ©, 0 < I(#) < 0o where

2
I(0) := /%%)—]—u(dx) for each 8 € ©

is the Fisher’s information.

We consider a sequence of real valued functions {@,(u,t) : (u,t) €
©?} defined by

on(u) :=t+u//nl(t).

‘We write

©n = pn(u,t) if both v and t are fixed;
onlu) == pn(u,t) if t is fixed.
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Throughout the paper we assume that Pgn(u,t) << PP for all t, u
€ © and for all n € N.

We introduce the concepts of the LAN process and the ULAN process
for the likelihood ratios.

DEFINITION 2.3. Given an IID asymptotic problem £ = (0, P;, X),
we consider a sequence of the random fields {Z,(u,t) : (u,t) € ©2%}
defined by

dpgn(u;t)
(21) Zn(u,t) = “—dPT(Xl,,Xn)
Hp Xj; pn(u,t))
p(X;:t)

based on the likelihood ratios. When we fix both u and ¢, we obtain
a sequence {Z, := Zp(u,t)} of random variables. We call it the LAN
process. When we fix only ¢, we obtain a sequence {Z,(u) := Z,(u,t)}
of continuous time stochastic processes with respect to u. We call it the
ULAN process.

REMARK 1. When we discuss a local asymptotic problem at 6, the
sequence {Zp(u,t)} of random fields given in (2.1) boils down to a se-
quence of processes indexed by u.

Throughout the paper we consider a given IID local asymptotic prob-
lem £ = (6,0, Py, X). Therefore, we fix t = 0 from now on. We first
consider the LAN process {Z,} in Definition 2.3.

We illustrate the notion of LAN based on the LAN process.

Define p, on R by p,(z) = exp{uz — «?/2} and consider a standard
normal random variable x. Then the process Z = {Z(u) : u € O}
defined by

(2.2) Z(u) := pu(x) = exp{ux — v*/2}
is a Gaussian. In particular, Z(u) is a log normal random variable if u
is fixed.

DEFINITION 2.4. Let {Z,} be the LAN process in Definition 2.3. An
IID local asymptotic problem & = (0,0, P, X) is said to obey LAN if
for some sequence of numbers ¢, ¢, is in © eventually,

dPy.
Zy = apy (X1,.-, Xn)
converges in distribution to a log normal random variable Z(u) given by
(2.2).
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The Definition 2.4 is equivalent to say that, for some sequence of
numbers ¢, ¢, is in © eventually, the identity
Py,
Zn = Zpn (X1,...,X5n) = exp{vn(u) + Sp(u)} exp{op(1)}
)
is valid, where the sequence {v,(u)} of random variables converges in
distribution to a normal random variable, the sequence {S,(u)} of ran-
dom variables converges to —u2/2 in probability.
The following LAN for an IID local asymptotic problem is well known.

ProPosITION 2.5. Consider the LAN process {Z,}. Then, under
Cramer regular conditions, the IID local asymptotic problem € = (6, ©,
P., X) obeys LAN.

More explicitly, for each fixed u, and for ¢, = 0 + u//nI(6),

dP?

Zn = d;’: (le ce 7Xn) = exp{rnu - U2/2} eXp{OP(]-)}
6

is valid, where
1 - 5p(X;50)
Vnl(8) o p(X;;0)

converges in distribution to a standard normal variable.

The proof of Proposition 1 is based on a central limit theorem and a
law of the large numbers.

In this paper we develop a generalization of Proposition 1 to a uniform
convergent result. Our tool to develop the uniform convergent result is
an empirical process theory.

Fora : © — R, welet ||¢|| := sup,cg [¢(u)]. Given asubset ©® C R,
let D(®) be the space of cadlag functions defined on ©. We endow the
space D(©) with the Skorohod topology. We use the following weak
convergence.

DEFINITION 2.6. [8] A sequence of D(©)-valued random elements
{Yn : n > 1} converges in distribution to a D(©)-valued Borel measur-
able random element Y, denoted by Y,, = Y, if Eg(Y) = lim,, o0 Eg(Yr)
forall g € C(D(©),]|-||), where C(D(©)),|]-||) is the set of real bounded,
continuous functions.

We introduce the notion of ULAN based on the ULAN process.

. DEFINITION 2.7. Let {Z,(u)} be the ULAN process in Definition
2.3. An IID local asymptotic problem & = (6,0, P, X) is said to obey
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ULAN if for some sequence of real valued functions ¢, (u), ¢n(u) is in
O eventually

dpP"
(Zn(u) = %};"(xl,...,xn) ue®) = Z={Z(u): ue 6},
9
as random elements of D(®), where Z is the Gaussian process given by
(2.2).

Our goal of the paper is to establish ULAN for an IID local asymp-
totic problem by developing the weak convergence of the ULAN process

Given an IID local asymptotic problem £ = (0,0, Py, X), we next
consider the ULAN process {Z,(u)} in Definition 2.3.

Then, by using Taylor expansion,

Zo(w) = exp {%(u) + Sp(u) + Rn(u)}, where

n 3
A U a—gp(Xj; 0)
w02
(2.4) Sn(u) = 0 ; WZ(X" 6), and

n n () 3
@3 Rawi=3 3 [ (nlw) ~ m) gl it

We are ready to state the main result.

THEOREM 2.8. Consider the ULAN process {Z,(u)}. Then, under
Cramer regular conditions, the IID local asymptotic problem €& = (4, R,
P, X) obeys ULAN.

More explicitly, for a sequence @, (u) = 0 4+ u/+/nl(0) of real valued
functions,

n

d
Zn(u) = d;;; (X1,...,Xn) = exp{yn(u) + Sp(u) + Rn(u)}

is valid, where
Yn = W = {ux : u € R} as random elements of D(R),
with {vn(u)} given by (2.3),
sup | Sn(u) + u2/2, — 0 almost surely,
ueR
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with {S,(u)} given by (2.4), and

sup |Rn(u)| — 0 almost surely,
u€R

with {S,(u)} given by (2.5).
The proof will be given in the next section.

REMARK 2. Our approach can readily be applied to get a result for
a general © C R with some additional topological assumptions. But we
do not pursue it here in a more concrete fashion.

REMARK 3. Compare the main result with Theorem 9.2.4 in Fabian
and Hanann [4] where SLAN property for the IID asymptotic problem
is discussed.

3. Proof of the main result

We first consider the case that © is a compact interval © = [0, 1]. We
begin by working the processes as the random elements of D([0, 1]), the
space of the cadlag functions on a compact interval [0, 1].

Consider a Gaussian process W = {W(u) : u € [0,1]} defined by

W (u) = uy,

where x is a standard normal random variable. Then the Gaussian
process W has mean zero and covariance structure Cov(W (u), W(v)) =
uv.

LEMMA 3.1. Let {yn(u) : u € [0,1]} be a sequence of processes

o Ly F0(X;;0)
") = 75 2 T 005

as in (2.3). Then
Yn = W as random elements of D(]0, 1]).

Proof. The proof consists of establishing the convergence of the finite
dimensional distribution and the tightness of v,

CrAmM 3.2. The finite dimensional distributions of 7, converge to
those of W.
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Write

_ L& 1 e(X0)
tn = \/ﬁj;w(e) p(X;;6)

and
1 Zp(X;;0)

VI0) p(X50)

&=

Then the mean is given by

Do
E¢ = / . 6pgi_’9)10(1‘;9)u(dm)

Var(¢;) = EE&

1 [ [2e(z,y;0)] B
- I<e>/ e G

Then by the central limit theorem, =, converges in distribution to x.
Observe that for each u € [0, 1]

Yn(u) = ul'y.

By the Cramer-wold argument, the finite dimensional distributions of
Y, converge to those of W.

CLAIM 3.3. The process v, = {yn(u) : u € [0,1]} is tight in the sense
that given € > 0 there exists a § > 0 such that

limsupP ¢ sup |yn(u) — (V)| >ep <e
n—00 |lu—v|<8

Let € > 0. Since {I',} is convergent in distribution, {I',,} is uniformly
tight [6]. That is, there exists a number K such that

(3.1) Imsup P{|Tp| > K} <e.

nT—00



380 Jongsig Bae and Sungyeun Kim

Choose 0 > 0 so that K < ¢/§. Then

P{ sup I%(U)—%(v)l>6} = P{Ifnl sup IU~vl>€}

|lu—v|<d lu—v|<d
P{|Tnl6 > €}

P{|Tu| > ¢/8}
P{|Tal > K}.

IA

Therefore, by (3.1), we see that

limsupP{ sup |yn(u) — yn(v)| > e} <limsup P{|[,| > K} <.
n—o0

n—00 |lu—v|<8

The proof of the Claim 3.3 is completed. Tightness of {y,} together with
the finite dimensional distributions convergence implies, see Pollard [7],
that v, = W as random elements of D([0, 1]). The proof of Lemma 3.1
is completed. O

LEMMA 3.4. Let {Sp(u) : v € [0,1]} be a sequence of processes

as in (2.4). Then

sup |Sp(u) +v?/ 2| — 0 almost surely.
u€[0,1]

Proof. Write

1< 62 0
Toim 2 3 5l (Xi) - B | gitai0)].

Then, by the strong law of the large numbers, we get
(3.2) T, — 0 almost surely.

Notice that

9 o (Gp(X10) | Zan(X1;6)
a0 ==y T XG0
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and
2
E——%(ﬁg;f) [ st
82
= g [ P@outs)
= 0.
Then we get

06?

LR Nk
= - / [——6;’(’; ;)f)} p(w; 0)u(dz)

2
_ _/ [5p(x;6)] (dz)

5|5 il 133:0)|

p(; )
= —I(0).
Now, observe that for u € [0, 1]
2 _ u? 2
| Sn(u) +u /2| = 1 ZZI 802 U(X;0)+u /2‘
1 1 82
= —_|= X 2
21(9)‘nj§1392l( 536) +16) |1
1 2
= 2—1(@5| nllu”]
Therefore, from (3.2), we get
[T 2 o Tl
sup |Sn(u +u22 sup |l < —< —0
uel0,1] | /2l = 21(0) weo,1 [l 21(0)
almost surely. The proof of Lemma 3.4 is completed. O

LEMMA 3.5. Let {R,(u) : u € [0,1]} be a sequence of processes
3

1 & [ion(w) o
=3 Z/@ (pn(u) — na)za—egl(Xj; 70) 1(d1g),
i=1

as in (2.5). Then
| Rnll — O

almost surely.
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Proof. Notice that %gl is uniformly bounded by 2C, say, and u < 1.

Then we see that

| R (u)] (on (1) — ng)*u(dnp)

IA

Q
™
S~

(i) — 6)*u(dnp)

3
nl(0)

1
Cn1/21(9)3/2'

IN

Q
I\
S~

Now, since 0 < I(0) < oo, we conclude

C 1

w2 1igypr

[ Rnl] <
The lemma is proved.

The following Lemma, is well known.

LEMMA 3.6. (See Billingsley [1] of Theorem 4.4) Let X,, = X as

random elements of D([0,1]) and let ||Y,, — c||1 — 0 almost surely. Then

XnY, = cX as random elements of D([0, 1]).

Now, in order to work out the problem for the infinite interval © = R,

we need the following Lemma 3.7.

LEMMA 3.7. (See Pollard [6] of Theorem V.23) Let X, X1, X, ..

. be

random elements of D(R) with P(X € C) = 1 for some separable set C.

Then,
Xn = X as random elements of D(R),

if and only if
Xn = X as random elements of D([0, k])
for each fixed k.

Proof of Theorem 1. Applying last lemmas we get the Theorem 1.

a
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