• Title/Summary/Keyword: Elliptic equation

Search Result 195, Processing Time 0.022 seconds

MULTIPLE SOLUTIONS RESULT FOR THE MIXED TYPE NONLINEAR ELLIPTIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.19 no.4
    • /
    • pp.423-436
    • /
    • 2011
  • We obtain a theorem that shows the existence of multiple solutions for the mixed type nonlinear elliptic equation with Dirichlet boundary condition. Here the nonlinear part contain the jumping nonlinearity and the subcritical growth nonlinearity. We first show the existence of a positive solution and next find the second nontrivial solution by applying the variational method and the mountain pass method in the critical point theory. By investigating that the functional I satisfies the mountain pass geometry we show the existence of at least two nontrivial solutions for the equation.

ON A CLASS OF QUASILINEAR ELLIPTIC EQUATION WITH INDEFINITE WEIGHTS ON GRAPHS

  • Man, Shoudong;Zhang, Guoqing
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.857-867
    • /
    • 2019
  • Suppose that G = (V, E) is a connected locally finite graph with the vertex set V and the edge set E. Let ${\Omega}{\subset}V$ be a bounded domain. Consider the following quasilinear elliptic equation on graph G $$\{-{\Delta}_{pu}={\lambda}K(x){\mid}u{\mid}^{p-2}u+f(x,u),\;x{\in}{\Omega}^{\circ},\\u=0,\;x{\in}{\partial}{\Omega},$$ where ${\Omega}^{\circ}$ and ${\partial}{\Omega}$ denote the interior and the boundary of ${\Omega}$, respectively, ${\Delta}_p$ is the discrete p-Laplacian, K(x) is a given function which may change sign, ${\lambda}$ is the eigenvalue parameter and f(x, u) has exponential growth. We prove the existence and monotonicity of the principal eigenvalue of the corresponding eigenvalue problem. Furthermore, we also obtain the existence of a positive solution by using variational methods.

MULTIPLICITY OF POSITIVE SOLUTIONS OF A SCHRÖDINGER-TYPE ELLIPTIC EQUATION

  • Eunkyung Ko
    • East Asian mathematical journal
    • /
    • v.40 no.3
    • /
    • pp.295-306
    • /
    • 2024
  • We investigate the existence of multiple positive solutions of the following elliptic equation with a Schrödinger-type term: $$\begin{cases}-{\Delta}u+V(x)u={\lambda}f(u){\quad} x{\in}{\Omega},\\{\qquad}{\qquad}{\quad}u=0, {\qquad}\;x{\in}\partial{\Omega},\end{cases}$$, where 0 ∈ Ω is a bounded domain in ℝN , N ≥ 1, with a smooth boundary ∂Ω, f ∈ C[0, ∞), V ∈ L(Ω) and λ is a positive parameter. In particular, when f(s) > 0 for 0 ≤ s < σ and f(s) < 0 for s > σ, we establish the existence of at least three positive solutions for a certain range of λ by using the method of sub and supersolutions.

RADIAL SYMMETRY OF POSITIVE SOLUTIONS FOR SEMILINEAR ELLIPTIC EQUATIONS IN $R^n$

  • Naito, Yuki
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.751-761
    • /
    • 2000
  • Symmetry properties of positive solutions for semilinear elliptic problems in n are considered. We give a symmetry result for the problem in the feneral case, and then derive various results for certain classes of demilinear elliptic equations. We employ the moving plane method based on the maximum principle on unbounded domains to obtain the result on symmetry.

  • PDF

SHORT-TERM COMPARISON OF SEVERAL SOLUTIONS OF ELLIPTIC RELATIVE MOTION (타원 상대운동 여러 궤도 해의 단주기 비교)

  • Jo, Jung-Hyun;Lee, Woo-Kyoung;Baek, Jeong-Ho;Choe, Nam-Mi
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.315-326
    • /
    • 2007
  • Recently introduced, several explicit solutions of relative motion between neighboring elliptic satellite orbits are reviewed. The performance of these solutions is compared with an analytic solution of the general linearized equation of motion. The inversion solution by the Hill-Clohessy-Wiltshire equations is used to produce the initial condition of numerical results. Despite the difference of the reference orbit, the relative motion with the relatively small eccentricity shows the similar results on elliptic case and circular case. In case of the 'chief' satellite with the relatively large eccentricity, HCW equation with the circular reference orbit has relatively larger error than other elliptic equation of motion does.

부정방정식에 대하여

  • 최상기
    • Journal for History of Mathematics
    • /
    • v.16 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • The Pythagorean equation $x^2{+}y^2{=}z^2$ and Pythagorean triple had appeared in the Babylonian clay tablet made between 1900 and 1600 B. C. Another quadratic equation called Pell equation was implicit in an Archimedes' letter to Eratosthenes, so called ‘cattle problem’. Though elliptic equation were contained in Diophantos’ Arithmetica, a substantial progress for the solution of cubic equations was made by Bachet only in 1621 when he found infinitely many rational solutions of the equation $y^2{=}x^3{-}2$. The equation $y^2{=}x^3{+}c$ is the simplest of all elliptic equations, even of all Diophantine equations degree greater than 2. It is due to Bachet, Dirichlet, Lebesque and Mordell that the equation in better understood.

  • PDF

A History of Researches of Jumping Problems in Elliptic Equations

  • Park, Q-Heung;Tacksun Jung
    • Journal for History of Mathematics
    • /
    • v.15 no.3
    • /
    • pp.83-93
    • /
    • 2002
  • We investigate a history of reseahches of a nonlinear elliptic equation with jumping nonlinearity, under Dirichlet boundary condition. The investigation will be focussed on the researches by topological methods. We also add recent researches, relations between multiplicity of solutions and source terms of tile equation when the nonlinearity crosses two eigenvalues and the source term is generated by three eigenfunctions.

  • PDF

LONG TIME BEHAVIOR OF SOLUTIONS TO SEMILINEAR HYPERBOLIC EQUATIONS INVOLVING STRONGLY DEGENERATE ELLIPTIC DIFFERENTIAL OPERATORS

  • Luyen, Duong Trong;Yen, Phung Thi Kim
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1279-1298
    • /
    • 2021
  • The aim of this paper is to prove the existence of the global attractor of the Cauchy problem for a semilinear degenerate hyperbolic equation involving strongly degenerate elliptic differential operators. The attractor is characterized as the unstable manifold of the set of stationary points, due to the existence of a Lyapunov functional.

Mild Slope Equation of Elliptic Type in Wave-Current Interaction (흐름의 영향을 고려한 구도형 완경사 방정식)

  • 이정렬
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.1
    • /
    • pp.81-87
    • /
    • 1994
  • The mild slope equation has been directly derived from the energy equation, and the relation between energy equation and Green's first and second identities was also clarified. It is shown here that the mild slope equation of elliptic type in the wave-current interaction has to have the same form as the one derived by Berkhoff (1972), and its physical meaning was investigated through analytical solutions.

  • PDF